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SUMMARY 

 

Large scale functional brain networks, defined by synchronized spontaneous 

oscillations between spatially distinct anatomical regions, are essential to brain function 

and have been implicated in disease states, cognitive capacity, and many sensing and 

motor processes. The electrical and hemodynamic functional signatures that represent 

these networks have been well characterized; however, the physiological origins, drivers, 

and mediators responsible for network behavior remain mysterious. In this work, we 

sever the corpus callosum in the rodent model, providing a unique platform to determine 

if structural connectivity (specifically the primary interhemispheric pathway) organizes 

and influences bilateral neural connectivity, bilateral hemodynamic connectivity, and 

brain-wide spatiotemporal dynamic activity patterns.  

Prior to the callosotomy work, resting state fMRI networks were evaluated using 

blood oxygen level dependent (BOLD) and cerebral blood volume (CBV) contrast 

mechanisms to determine if either method offered unique or advantageous functional 

insights. CBV contrast has indicated increased sensitivity to micro-vascular activity and 

reduced influences to large draining veins as compared to BOLD in task-based studies, 

suggesting increased spatial localization of spontaneous low frequency oscillations may 

be possible using CBV contrast. The fMRI contrast experiments revealed that BOLD and 

CBV provide highly similar spatial maps of functional connectivity; however, the 

amplitude of BOLD connectivity was stronger. We also demonstrated that propagating 

spatiotemporal dynamic waves previously observed only in BOLD data were 
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reproducible in CBV-weighted imaging. This finding suggests that dynamics are a 

general hemodynamic phenomenon and not limited to BOLD sensitive contrast.  

Due to long surgical periods required for the split brain paradigm, the effects of 

extended durations of isoflurane and dexmedetomidine on functional network integrity 

were also evaluated. We found that extended isoflurane anesthetic periods prior to the 

switch to dexmedetomidine attenuate functional activity for a longer duration as 

compared to a shorter isoflurane paradigm. We also observed a significant evolution of 

functional metrics as a result of long durations of dexmedetomidine use under the 

currently accepted and refined dexmedetomidine sedation paradigm.  

A novel tool was developed, building on a on a spatiotemporal pattern finding 

algorithm previously developed in our lab. One shortcoming of the original 

spatiotemporal output was its inability to be quantified based on its continuous nature. A 

statistical threshold generated using a randomization paradigm was applied to the 

dynamic templates, resulting in only statistically significant voxels that could be counted 

and otherwise quantified. Interestingly, the dynamic quantitative output shared a linear 

relationship with traditional seed based functional connectivity. 

Taking these previous findings into account, we moved forward with the 

callosotomy study. There are two primary hypotheses that explain the organization of 

functional networks: 1.) Bilateral correlation is driven directly by interhemispheric 

interactions or 2.) Subcortical driving inputs are responsible for the bilateral synchrony. 

To address the validity of these models, two experimental groups were evaluated, a full 

callosotomy model in which the corpus callosum was completely sectioned and a sham 

callosotomy group in which the gray matter was sectioned but the corpus callosum 
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remained intact. Results indicated a significant reduction in bilateral connectivity in the 

full callosotomy group as compared to the sham group across all evaluated fMRI seed 

regions. Similarly electrophysiology revealed significantly reduced bilateral connectivity 

in delta, theta, low beta, high beta, and gamma band limited power correlation as well as 

filtered broadband data in the full callosotomy group as compared to the sham group. 

Spatiotemporal dynamic analysis revealed bilaterally symmetric propagating waves in the 

sham data, but none were present in the full callosotomy data; however, the emergence of 

unilateral spatiotemporal patterns became prominent following the callosotomy. This 

finding suggests that the corpus callosum could be largely responsible for maintaining 

bilateral network integrity, but non-bilaterally symmetric propagating waves occur after 

the severance of the corpus callosum, suggesting a possible subcortical driver of the 

dynamic patterns.   

This work represents a robust finding indicating the corpus callosum’s influence 

on maintaining integrity in bilateral functional networks; furthermore, the decrease in 

functional connectivity amplitude as a result of a full callostomy versus a sham 

callosotomy is highly similar for fMRI and electrophysiology suggesting the linked 

nature of these two functional signals.  
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CHAPTER 1 

INTRODUCTION 

 

Functional MRI 

In 1990 a Japanese scientist, Seiji Ogawa, introduced the techniques underlying 

functional magnetic resonance imaging (fMRI) (Ogawa, Lee et al. 1990). fMRI is a 

functional imaging modality capable of localizing neural activity in the brain with high 

spatial and temporal resolution. The premise of Ogawa’s ingenious work was the ability 

of the MRI machine, paired with an optimized pulse sequence, to detect small changes in 

the local levels of blood oxygenation. This change in signal is derived from the intrinsic 

contrast agent in blood, hemoglobin. Oxygenated hemoglobin is diamagnetic and 

deoxygenated hemoglobin is paramagnetic. When neural activity occurs, oxygen is 

consumed from the local blood in surrounding vasculature, and as a compensation for this 

loss of blood oxygen, the brain routes oxygenated blood to the ‘active area’ far exceeding 

the current demand. When diamagnetic oxygenated hemoglobin arrives (specifically 

when the fraction of oxygenated/deoxygenated hemoglobin increases), magnetic field 

inhomogeneities are decreased, which leads to a subsequent increase in the measured 

signal. In fMRI a surrogate signal of neural activity is measured (not a direct measure of 

neural activity), so it is essential to understand the complex relationship between neural 

activity and blood oxygen level dependent (BOLD) changes. Ogawa’s work opened the 

proverbial door to a limitless amount of research focused on understanding activity in the 
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human brain in a non-invasive manner and how this activity relates to brain organization, 

behavior, genetics, and disease states. 

In fMRI, a series of images of the same physical volume are collected over a 

period of seconds to minutes. Each image represents a snapshot of functional activation 

occurring within a specific area, manifesting as a change in the signal intensity of a 

voxel. Functional images are typically acquired in a train using either gradient or spin 

echo planar image (EPI). Analysis of this train of images allows a clinician to determine 

the local neuronal activation state over time based on fluctuations in voxel signal 

intensity. Traditionally fMRI experiments have been conducted utilizing a task-based 

paradigm where there are periods where task is performed and periods where the subject 

performs no task. The researcher then compares the two brain states and subsequently 

determines the amount of ‘activity’ in response to a given task. These fMRI experiments 

have been central in mapping the functional architecture of the brain; however, there is 

abundant functional information to be obtained from the human brain that is not directly 

related to a task. Other MRI methods have also been used to measure functional activity 

including cerebral blood volume (CBV) (Zhao, Wang et al. 2005) weighted imaging 

(increased spatial localization of functional changes, less susceptibility to physiological 

noise [specifically less single from draining veins that don’t necessarily represent local 

neural activity]) and cerebral blood flow (CBF) (Ostergaard, Weisskoff et al. 1996) 

weighted imaging (ability to measure blood inflow activity).  

The direct relationship between local changes in blood oxygenation and neural 

activity has been researched extensively. In 2001, Logothetis et al. simultaneously 

measured local electrical activity using invasive electrodes and the blood oxygen level 
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dependent (BOLD) signal using MRI in the non-human primate model during visual 

stimulation (Logothetis, Pauls et al. 2001). This paper garnered the universal acceptance 

that the signals measured in fMRI are a directly related to neural activity (specifically 

local field potentials), at least in cases where the input to induce brain activation is 

carefully controlled. The hemodynamic delay between the onset of neural activity and the 

peak of the measured BOLD signal was determined to be 4-6 seconds in humans and can 

be mathematically modeled using the hemodynamic response function (Buxton, Wong et 

al. 1998). It is often difficult to quantify spontaneous (non-task driven) fluctuations using 

the BOLD signal because of signal to noise issues. The inability to average multiple 

repetitions of a functional response because there is no specific time locked stimuli to use 

as a functional marker also makes it difficult to obtain definitive information regarding 

spontaneous fluctuations. 

 

Spontaneous Low Frequency Fluctuations (LFFs) and Functional Connectivity 

In the early days of standard event-related fMRI paradigms, oscillations in the 

fMRI signal not directly related to the task were disregarded as noise. Cortical low 

frequency oscillations of < 0.2 Hz were hypothesized to reflect inherent periodic vascular 

dynamics, breathing/head motion, or some other form of global noise; however, in 1995, 

Biswal et al. (Biswal, Yetkin et al. 1995) demonstrated that this low frequency “noise” 

was highly correlated in bilaterally symmetric regions of the previously established motor 

network. Biswal hypothesized that these synchronous low frequency oscillations were a 

reflection of coordinated neural activity, termed “functional connectivity”, as opposed to 

simply unimportant physiological noise. This unexpected finding of synchrony in slow 
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wave oscillations has since been reproduced in several other known networks including 

the default mode, visual, auditory, memory, and language networks (Belger and Banich 

1998; Cordes, Haughton et al. 2000; Raichle, MacLeod et al. 2001; Hampson, Peterson et 

al. 2002; Fox, Corbetta et al. 2006). 

When Biswal first published his work there was some question as to how much 

physiological noise and inherent vascular dynamics contributed to the coordinated signal. 

In human fMRI scans, repetition time (TR) values are conventionally around 1-4 seconds 

allowing for aliasing of the physiological components from breathing and heart rate; both 

of these sources were suggested as a source of coherent low frequency oscillations. In 

recent fMRI studies, particularly in animals, high powered, fast switching gradients allow 

for much shorter (< 500 ms) TRs while maintaining high signal to noise ratios. Shorter 

TRs allow for sampling of major physiological components and removal during the 

analysis process. From these studies it was determined that heart rate or breathing rate 

was not solely responsible for bilateral cortical coherence although both contribute to 

coherence found between other regions. 

Functional connectivity studies are focused on finding areas of the brain with 

synchronized spontaneous activity. There are several methods commonly used for 

exploring these functional networks. The simplest and most commonly used technique 

involves choosing a region of interest in the brain (typically a region known to be 

involved in a functional network) and obtaining a time course of the activity in that 

region. The acquired time course is then cross correlated with the time courses of all 

other voxels in the image. Maps showing the spatial localization of cross correlation are 

often called functional connectivity maps. These maps show regions of the brain highly 
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correlated with the “seed” time course can which be used to pinpoint functionally 

connected brain regions. Higher cross correlation values represent stronger connectivity. 

Independent component analysis (ICA) is another commonly used functional 

connectivity analysis technique (Lu, Zuo et al. 2007). ICA separates the complex signal 

into a number of “independent components” that make up the primary signal. The 

purpose of this method is to find the independent contributing signals, theoretically 

suggesting individual neural sources. A shared component spread throughout 

anatomically distinct brain regions would suggest functional similarity in these regions, 

possibly representing a functional network. The problem with both seed based analysis 

and ICA analysis is that they only provide steady-state information, with the assumption 

that functionally connected areas maintain their connectivity strength over the length of 

the scan. As it turns out activity within functional networks can vary greatly even within 

the length of one resting state scan, and that variance can contain highly relevant 

information to the current functional brain state.  

 

Spatiotemporal Dynamics 

Recently Majeed et al. proposed a method of detecting functionally connected 

networks based on visual inspection of low frequency power localization over space and 

time (Majeed, Magnuson et al. 2009; Majeed, Magnuson et al. 2011). Incorporating 

pattern recognition algorithms allows for the visualization of propagating patterns of 

spatiotemporal activity that only become apparent using averaging of repeating patterns. 

This technique provides a unique method of locating spontaneous and coherent events 

that are simultaneously occurring in the spatial and temporal domain. Majeed’s dynamic 



www.manaraa.com

6 
 

technique has since been used in other published work (Magnuson, Majeed et al. 2010). 

Other recent works have now focused on investigating the dynamic behavior of resting 

state networks (Chang and Glover 2010; Hutchison, Womelsdorf et al. 2012; Liu and 

Duyn 2013). The results of these works illustrate the functional connectivity is not only 

occurring staticly, and it is useful to evaluate the networks from a dynamic perspective. 

Using this spatiotemporal dynamic detection method, visualization of both static 

and dynamic connectivity within the brain is possible. Traditional functional connectivity 

analysis only allows visualization of networks which maintain strong coherence 

throughout the duration of the functional scan (6-10 minutes). When brain state changes 

occur during the scan, the strength of connectivity within functionally connected 

networks may significantly decrease or even cease to exist; simultaneously another 

network may significantly increase its strength of connectivity. In the case of static 

analysis, it is likely that neither of these transient networks would be located.  

Brain state changes occur on the order of seconds; static type (region of interest 

[ROI] and ICA) analysis is unable to distinguish these shorter than scan length state-

changes. Furthermore coherence between two regions of the brain may be phase delayed 

but otherwise coherent. Static analysis would show these two regions as being 

uncorrelated, when in reality they are highly correlated with a slight phase delay. 

Spatiotemporal dynamic analysis will allow us to visualize dynamic functional network 

activation including phase delayed coherent regions allowing us to derive entirely 

different inferences from the same data sets that were originally analyzed using 

traditional static analysis techniques. 
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Using the proposed spatiotemporal dynamic analysis technique will offer 

researchers a plethora of additional information regarding dynamic events that are not 

available from static based functional network evaluation. We believe this analysis 

technique will be vital to understanding the functional significance of coherent neural 

activity. The long term goal of these findings is to be able to use signatures of resting 

state functional connectivity data sets for clinical diagnostic and treatment purposes. 

 

Significance of Low Frequency Fluctuations in the Human Brain 

Large scale functional brain networks are defined by synchronous spontaneous 

oscillations between structurally and functionally connected brain regions. The apparent 

importance of these brain networks cannot be understated as functional variations in the 

coordination of these networks have been implicated in countless disease states (Grady, 

Furey et al. 2001; Lowe, Phillips et al. 2002; Villalobos, Mizuno et al. 2005; Garrity, 

Pearlson et al. 2007; Greicius, Flores et al. 2007; Liu, Yu et al. 2007); the ability to 

perform the most common daily tasks including speaking (Tomasi and Volkow 2012), 

visually perceiving and discriminating our environment (Fairhall, Indovina et al. 2009), 

or recalling memories and planning (Alnajjar, Yamashita et al. 2013); and recently in 

defining gradations of cognitive ability in healthy individuals (Weissman, Roberts et al. 

2006; Boly, Balteau et al. 2007; Seeley, Menon et al. 2007; Eichele, Debener et al. 2008; 

Hesselmann, Kell et al. 2008; Kelly, Uddin et al. 2008; Sadaghiani, Hesselmann et al. 

2009; van den Heuvel, Stam et al. 2009; Thompson, Magnuson et al. 2012). Scientists 

have developed a robust picture of the centrality of functional networks as they relate to 

brain function and the resulting cognitive and behavioral outputs; however, the 
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underlying physiological components modulating these networks remain largely 

undetermined.  

While functional connectivity analysis is not currently approved as a diagnostic 

tool, alteration in coherence occurs in the measured FC signal as a function of the 

progression of certain neuro-degenerative diseases. Researchers have observed altered 

functional connectivity in patients with Alzheimer’s disease, multiple sclerosis, 

schizophrenia, depression, Parkinson’s disease, attention deficit hyperactivity disorder, 

epilepsy and blindness (Grady, Furey et al. 2001; Lowe, Phillips et al. 2002; Garrity, 

Pearlson et al. 2007; Greicius, Flores et al. 2007; Liu, Yu et al. 2007). 

Most of the energy used by the human brain is consumed when the brain is not 

performing any specific task (Raichle and Mintun 2006), in a brain state termed the 

“resting state” mode. Spontaneous low frequency fluctuations are responsible for 

consuming a large portion of this energy. Although it is not yet clear what the functional 

purpose of these spontaneous oscillations are, but we can infer from the coordinated 

nature of the fluctuations and the general efficiency of the brain that it is a necessary 

process. LFFs have been implicated as playing a critical role in sensory perception, motor 

integration (Huber, Tian et al. 2008), and memory consolidation during sleep (Haider and 

McCormick 2009). Other studies insist that this slow-wave activity reflects processing 

within local circuits and the subsequent “broadcasting” to bilaterally symmetric brain 

regions (Mohajerani, McVea et al. 2010). 

While researchers have a basic understanding of the physiological implications of 

hemodynamic functional connectivity, a direct relationship between the neural signals 
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and the physiological underpinnings has not been established. In order for functional 

connectivity to have relevance as a diagnostic tool, we must first determine the nodes, 

sources, and mediators responsible for driving functional connectivity, and we also must 

further explore the functional purpose of coherent activity. 

In order to understand the relationship between fMRI LFFs and neural activity, a 

series of studies have been conducted in animal models that combine fMRI and 

electrophysiology (He, Snyder et al. 2008; Nir, Mukamel et al. 2008; Shmuel and 

Leopold 2008). Low frequency oscillations in the fMRI signal have been shown to be 

highly correlated with low frequency fluctuations of power within the gamma band (40 - 

80 Hz) of local field potential (LFP) activity from one electrode (Shmuel and Leopold 

2008). This work provides a further understanding of the relationship between 

hemodynamic and electrical activity but the findings do not provide any insight into to 

the physiological origin of functional connectivity. LFPs are typically measured by 

inserting needle electrodes directly into the extracellular matrix of regions of interest in 

the brain. Further details of electrophysiological recordings will be discussed in the next 

major section. 

Work in our lab suggests that coherence in low frequency oscillations of the 

gamma band power from electrodes placed in bilaterally symmetric areas of a functional 

network correlates with a decrease in the functional coherence of low frequency BOLD 

data as a function of anesthetic depth (Pan, Thompson et al. 2011). An increase of 

coherence in low frequency power oscillations of theta and delta band 

electrophysiological activity correlates with increase low frequency BOLD coherence. 

One hypothesis from our lab suggests that low frequency fluctuations of electrical and 
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hemodynamic activity are driven by a subcortical source, are largely mediated by intra- 

and inter-hemispheric cortical components and result in the modulation of low frequency 

gamma power oscillations. There is much work to be done in order to fully understand 

the complex relationship between spontaneous neural activity, neural coordination, brain 

condition, and the hemodynamic response. 

The most advantageous model for studying this relationship exists in the rat 

model. Human subjects exhibit variability in amplitude measures of functional 

connectivity on different scan dates. This variability is likely due to inherent differences 

in the individual’s neural activity, neurovascular coupling, and general brain activity 

which can be influenced by chemicals (caffeine, cocaine), stress, and even oxygenation 

levels (Biswal, Hudetz et al. 1997; Li, Biswal et al. 2000). Lab rodents on the other hand 

are genetically identical, do not ingest stimulants, and are largely exposed to an identical 

environment day after day. Animal models also allow for invasive recording resulting in 

highly specific neural information that cannot be obtained from analogous non-invasive 

experiments in humans. Finally functional network studies in humans often probe 

aberrant networks, as a means to understand network structure, in patients with clinical 

abnormalities such as callosal agenesis, Alzheimer’s, epilepsy, or depression. In each of 

these cases abnormal networks exist prior to network evaluation which makes it difficult 

to draw conclusions regarding functional changes. 
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Generalized fMRI Methods 

The experiments in the following chapters each contain an fMRI recording 

paradigm; however, slightly different parameters are used for each experiment. Here we 

will briefly discuss imaging procedures and preprocessing. Specific methods will be 

discussed in the relevant chapters for each experiment. 

All images are collected on a 9.4 Tesla / 20cm bore Bruker Biospec MRI machine 

(Bruker, Billerica, MA). This machine is interfaced with an AVANCE console (Bruker, 

Billerica, MA) that runs ParaVision software (Bruker, Billerica, MA). The magnet is 

equipped with an actively shielded gradient coil that creates a known magnetic strength 

modulation across the primary magnetic field, allowing for spatial localization of 

recorded signals. These gradients are capable of producing a 20 gauss/cm field strength 

with a rise time of 120μs. A two-coil actively decoupled imaging setup was used. A 7 cm 

diameter volume coil was used to transmit a radio frequency (RF) pulse into the imaged 

object to excite the protons such that they are no longer aligned with the primary 

magnetic field; a 2 cm surface coil was used to receive the signal generated from the 

protons returning to alignment with the primary magnetic field.  

When the animal or imaged object is introduced into the scanner, the local 

magnetic field is slightly disturbed. This disturbance must be accounted for to ensure 

maximal signal to noise ratio (SNR) in the resulting images; in order to alleviate this 

problem local shims are modulated from the console to create the most homogenous field 

possible considering the presence of the imaged object. A FASTMAP (Bruker, Billerica, 

MA) sequence is used to automatically perform this shimming function typically over a 6 

x 6 x 6 mm region in the central portion of the imaged object.  
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Resting state scans are commonly performed in this thesis work and are made of a 

series of functional images that are sensitive to changes in local blood oxygenation. A 

single 2mm thick coronal imaging slice is collected with a 2.56 x 2.56cm field of view 

(FOV) and a 64x64 voxel matrix representation resulting in 400µM spatial resolution. 

These scans last approximately 8 minutes and are acquired using a gradient echo planar 

imaging (EPI) sequence. 1000-1200 volume acquisitions are performed with 300 – 

500ms between images; the time between scans is known as the repetition time (TR). An 

echo time (TE) of 15ms is used for all resting state scans in this work which represents 

the time of data acquisition following the initial RF excitation. 

Once the resting state data set is collected, data must be preprocessed before 

further analysis is performed. MATLAB (MathWorks, Natick, MA) is the programming 

tool used for all data processing. First all voxel timecourses are demeaned (the mean 

value of a timecourse is subtracted from all time points, creating a signal oscillating 

around zero on the y-axis. Positive amplitudes represent an over average activity state 

while negative amplitudes will represent a less than average activity state. Trends are 

often found in functional timecourses which represent general scanner instabilities or 

other non-functionally relevant oscillations of very low frequency (<0.01 Hz). These 

trends are removed by performing quadratic detrending which removes the aberrant 

drifts. Following detrending, data is normalized between zero and one by subtracting the 

minimum value from all data point and dividing by the maximum value in a timecourse. 

Variations in amplitude of the functional signal are then expressed as percent change 

from the mean.  Following these steps, comparisons can be made between voxels and 

between subjects.   
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An additional preprocessing step is necessary for evaluating functional networks. 

These networks organize in the low frequency range (~0.01 Hz – 0.3 Hz). All voxel 

timecouses are filtered into this frequency range using a finite impulse response filter 

with a 100 second window length (1 / minimum evaluated frequency). Data was once 

again normalized following filtering to remove any additional anomalies attributed 

filtering. Calculations of functionally relevant information and network activity can now 

be performed on this preprocessed data.  

 

Corpus Callosum and Resting State Functional Connectivity 

The corpus callosum has been implicated as a primary mediator of bilateral 

functionally coherent networks (Nielsen, Montplaisir et al. 1993). Studying the role of the 

corpus callosum in interhemispheric coherence has been partially investigated, but 

conclusive findings on the corpus callosum’s role in mediating functional connectivity 

have not been determined. From previous work we expect that the corpus callosum plays 

a significant role in mediating the interhemispheric coherence of the fMRI and 

electrophysiological signal as it is the primary interhemispheric neural connection 

(Nielsen, Montplaisir et al. 1993; Corsi-Cabrera, Trias et al. 1995). Further studying the 

role of the corpus callosum could provide several important pieces of additional 

information. 1) Does the corpus callosum mediate electrophysiological and fMRI 

functional connectivity? 2) Does the corpus callosum similarly influence the electrical 

and hemodynamic coherence (provides additional information about the coupling of the 

two signals)? 3) Is the corpus callosum responsible for ‘driving’ bilaterally symmetric 
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waves of activity, does it serve to maintain bilateral coherence of the waves, or do the 

waves cease to exist following callosal sectioning? 

Studies focused on the role of the corpus callosum in mediating bilateral 

functional coherence have produced many conflicting and inconclusive results. 

Interhemispheric EEG coherence was shown to decrease with increased agenesis of the 

corpus callosum; however, intra-hemispheric coherence was not altered (Nielsen, 

Montplaisir et al. 1993). A study by Corsi and Cabrera determined that interhemispheric 

coherence was unaffected by a lesion of the corpus callosum (only one human patient 

with untreatable epilepsy) (Corsi-Cabrera, Trias et al. 1995). Similarly, in animal studies 

of surgically callostomized cats, results have not been conclusive; two groups reported no 

change in interhemispheric coherence after a full surgical callosotomy while two other 

groups performing a similar experiment concluded there was a slight decrease in EEG 

coherence after callosotomy (Leocani and Comi 1999). A more recent study on the role 

of the corpus callosum was conducted on a 6 year old girl with intractable epilepsy 

(Johnston, Vaishnavi et al. 2008). Johnston et al. used resting state fMRI to investigate 

changes in functional connectivity before and after complete severing of the corpus 

callosum. fMRI scans conducted before and after a complete section of the corpus 

callosum resulted in a “striking loss” of interhemispheric low frequency BOLD 

correlations. A limitation of this study is that the results are based on data from only one 

patient. 

In 2010 Mohajerani et al. published a paper imaging normal and acallosal mice 

using voltage sensitive dyes (VSDs) (Mohajerani, McVea et al. 2010). Spontaneous 

activity was less synchronized in the acallosal mice as compared to normal mice although 



www.manaraa.com

15 
 

the composition of the frequency distribution of the raw signals was not altered. Some 

synchrony was maintained, and the authors suggested that subcortical bi-hemispheric 

structures (thalamus and hippocampus) are responsible for the remaining correlation. The 

results obtained from the acallosal mice may be different than those taken from an acute 

sectioning of the callosum; these mice have had to adapt to life without a corpus callosum 

which likely led to plastic brain changes. 

Further evidence of the corpus callosum’s likely role in functional network 

integrity lie in the interrelationship between structural connectivity and functional 

connectivity (Honey, Sporns et al. 2009); however, it has also been revealed that direct 

structural connectivity was not necessary for strong functional connectivity to exist 

(Damoiseaux and Greicius 2009; Honey, Sporns et al. 2009). While the neuroanatomical 

framework provides the platform on which functional networks are activated, networks 

are highly adaptive within that substrate to respond to the brain’s current processing 

needs. While structural connectivity plays a central role in functional connectivity it is 

not the only source driving these networks. 

There is a substantial body of work evaluating the role of the corpus callosum in 

modulating functionally connected networks; however, all of these studies have been 

performed in human patients with epilepsy (Montplaisir, Nielsen et al. 1990; Corsi-

Cabrera, Trias et al. 1995; Brazdil, Brichta et al. 1997; Corsi-Cabrera, Ondarza et al. 

2006; Johnston, Vaishnavi et al. 2008; Uddin, Mooshagian et al. 2008; Pizoli, Shah et al. 

2011). Functional network integrity is disrupted after a callostomy in some patients while 

surprisingly increasing functional network integrity in other patients; obtaining a 

consistent result regarding the influence of the corpus callosum has been elusive. Several 
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factors may contribute to these non-uniform findings. Callosal surgical parameters are 

specific to the patients and their conditions effectively resulting in a non-homogenous 

model. Pre-surgical networks in patients are highly variable and dependent on the 

severity, classification, and locus of the epileptic seizures. Many patients take drugs that 

effectively altering functional brain activity prior to and post callosotomy, and similarly 

anesthesia was used during the imaging/scanning protocols in several of the patients 

which likely affect functional brain networks. The timing of functional evaluation in 

these patient models was highly variable, occurring within hours of the surgery or up to 

decades follow surgery, functional restructuring is highly likely in the latter case. Finally 

many of these studies only evaluated a single patient and anomalies are possible. 

Based on the inhomogeneity of the human subjects, there is a clear need for a 

controlled, reproducible study of functional connectivity in a population of split-brain 

animal models. While confounding variables are highly reduced in the current work using 

the rodent model; the paradigm is not without constraints. While care was taken to avoid 

large vessels, vascular damage was inevitable as a result of the callosotomy procedure; 

however, the sham callosotomy group was subject to identical vascular influences which 

would preserve the integrity of remaining variability between the final connectivity 

values found in the groups.  

While several researchers have investigated the role of the corpus callosum in 

functional networks; the results have been highly inconclusive with some studies 

suggesting that the corpus callosum is vital in mediating BOLD functional coherence 

(Montplaisir, Nielsen et al. 1990; Johnston, Vaishnavi et al. 2008) while other groups say 

that severing of the corpus callosum does not influence functional coherence (Corsi-
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Cabrera, Trias et al. 1995; Pizoli, Shah et al. 2011). In each of the previous studies there 

have been inconsistencies in the acquired data and acquisition methods, which we largely 

remedied with this thesis work. We collected BOLD fMRI data and electrophysiological 

data from a homogenous group of experimental rats and confirmed the findings using 

careful controls. The methods used to analyze the data included spatiotemporal analysis 

which we believe provided insight into the functional origin of spontaneous coherent 

activity. It is possible that while functional coherence is decreased after a callosotomy, 

relationships still exists between functionally connected regions of the left and right 

hemispheres; however the phase locked synchrony will be lost.  

 

Electrophysiology 

Our lab is pioneering work focused on recording spontaneous BOLD activity 

during rest using MRI while simultaneously using electrophysiology to directly measure 

neural activity in areas of interest. This work will partially focus on determining the 

relationship between the two signals. Electrophysiology is the measurement of electrical 

activity originating from cells. For the purpose of the thesis work presented here, we 

recorded current derived from neurons using electrodes inserted directly into brain 

regions of interest. Spiking activity and local field potentials (LFPs) generated by the 

combined activity of many neurons near the tip of the electrode placed in the primary 

somatosensory cortex were obtained. Multi-unit activity (MUA) is a measurement of the 

spiking activity of a group of neurons in a given cortical region and reflects the output 

activity from a cortical region. LFPs are a measurement of the local electrical 

environment which is influenced by synaptic transmission and inward and outward 
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currents of the action potential; this measurement is thought to reflect the synchronized 

input into the region. LFPs are recorded using low impedance electrodes positioned in 

extracellular brain tissue.  

Papers published in the last ten years have focused on combining 

electrophysiological recording and fMRI recordings in hopes of identifying the neural 

origin of fMRI signals. Initially simultaneous electrophysiology and fMRI focused on 

determining the electrical response and the resulting hemodynamic response due to a 

known input stimulus (Logothetis, Pauls et al. 2001). This work successfully determined 

the relationship between the electrical activity and resulting hemodynamic activity in 

response to a stimulus. Logothetis concluded that the LFP and MUA signals were both 

correlated to the fMRI response, but the LFP was a more accurate predictor of the 

subsequent response. This finding is consistent with the known bioenergetics underlying 

the fMRI signal, LFPs account for the consumption of local energy metabolism and 

energy metabolism is tightly coupled with neural activity (Logothetis, Pauls et al. 2001). 

Understanding the relationship between the global fMRI LFFs and the underlying 

neural activity is understandably more complex than measuring the fMRI and neural 

activity in response to a stimulus. Instead of focusing on a specific area of the brain 

which is known to be activated in response to a stimulus, information must be obtained 

from the entire brain with no known driving source or physiological basis. Early work 

attempting to understand connectivity in the brain focused primarily measuring 

coordinated electrical activity using either EEG or inserted electrodes. In 1999 Leocani et 

al. explored the relationship between coherence in the low frequency EEG activity and 

pathological conditions (Leocani and Comi 1999). Decreased coherence proved to be a 
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useful indicator of damaged, disrupted, or deteriorated structural connections in the brain 

as a result of disease. While this study made it clear that functional networks can be 

disturbed, the functional significance of this altered activity remained elusive. In another 

attempt to understand the basis of this neural coherence a 2008 paper by Nir et al. 

simultaneously combined EEG recordings with local field potential recordings in the 

human sensory cortex (Nir, Mukamel et al. 2008). Nir’s work concluded that spontaneous 

modulations in the neural firing rate and power modulations in broad band (40 Hz – 100 

Hz) gamma LFP power were the most likely correlated to low frequency spontaneous 

fMRI fluctuations. 

The problem with studying only electrical activity is that it is not easily 

translatable to clinically relevant studies. For diagnostic purposes, fMRI scans are useful 

because they provide full brain coverage with high spatial resolution and full brain 

coverage with minimal invasiveness. While EEG data is useful, the data obtained only 

contains information from the superficial layers of brain, and the information is relatively 

noisy and has poor spatial resolution. Deep brain electrophysiological recordings have 

poor spatial coverage and are almost never done in healthy humans due to their invasive 

nature. An understanding of how the coherent electrical data relates to the coherent slow 

wave fMRI data is essential. 

More recently research groups have explored the underlying electrophysiological 

basis of functional connectivity in the brain by simultaneously combining resting state 

fMRI and electrophysiological recording. This research is vital, because it provides a 

direct link between spontaneous neural activity and a surrogate response, BOLD activity, 

which provides potential answers two key pieces to the puzzle that is functional 
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connectivity. 1) What is the neural correlate of low frequency coherent BOLD activity? 

2) What is the relationship between the non-invasively measured ‘surrogate’ of neural 

activity (BOLD) and direct, invasively measured neural activity. 

In order to address the first question posed above, Shmuel and Leopold recorded 

electrical activity in the monkey’s visual cortex while simultaneously obtaining high 

resolution gradient echo BOLD scans (Shmuel and Leopold 2008). A direct comparison 

is conducted between the temporal and spatial dynamics of oscillations in BOLD and 

electrophysiological data. Shmuel determined that the low frequency spontaneous fMRI 

signal was tightly correlated with gamma band power modulation recorded from one 

region of the cortex at a time lag of 6 second. Interestingly the 6 second time needed for 

the highest correlation between electrophysiological gamma power oscillations and the 

fMRI signal is similar to the traditionally accepted hemodynamic delay reported 

previously by Logothetis (Logothetis, Pauls et al. 2001). While LF BOLD activity may 

be correlated with low frequency power oscillations in gamma band electrical activity it 

is not yet clear whether the neural activity is ‘driving’ the hemodynamic oscillations or if 

they are both driven by some other source. 

He et al. sequentially recorded electrocorticography (ECoG) data and BOLD 

fMRI data in humans (He, Snyder et al. 2008). Electrocorticography (electrodes placed 

directly on the exposed brain) data was collected from bilateral sensorimotor areas; 

correlation values were calculated between low frequency (<0.5 Hz) timecourses 

generated from these two electrodes. Correlation values were also obtained from bilateral 

sensorimotor low frequency BOLD fMRI data. Values obtained from the ECoG data 

were plotted versus fMRI correlation data. This process was repeated for data obtained 
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during awake periods, slow-wave sleep, and rapid-eye-movement (REM) sleep. Highly 

significant correlations were found between the ECoG and fcMRI data across all three 

arousal state demonstrating the tight correspondence between these two signals. Similar 

to previous studies, He’s work suggests that spontaneous slow wave cortical potential and 

low frequency BOLD signal fluctuations most likely reflect endogenous fluctuations of 

cortical excitability within functional relevant systems. 

A 2010 paper by Schölvinck et al. expanded on this work (Scholvinck, Maier et 

al. 2010). She determined that modulations in the gamma band electrophysiological 

activity measured from a single cortical site in the monkey brain exhibit positive 

correlation with 6s – 8s lagged fMRI LFFs over the entire brain. Coherence measures in 

the fMRI LFFs (<0.1 Hz) and low frequency power modulations in the gamma band were 

similarly influenced based on the monkey’s behavioral state further suggesting a tight 

coupling of fMRI LFFs and neural activity. 

While these combination electrophysiology/functional connectivity MRI (fcMRI) 

studies provide vital insight into the neural correlates of BOLD functional connectivity, 

we are a long way from truly understanding complex functional networks. In this work 

we focused on elucidating possible mediators of coherent spontaneous BOLD activity. 

The corpus callosum serves as the primary anatomical connection between the brain’s 

hemispheres, and disturbing this primary interhemispheric connection should disturb 

normal function. This model will provide a unique evaluation of the existence of 

coherence and general low frequency spontaneous oscillations and the role of the corpus 

callosum in mediating this activity. 
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Use of Animal Models 

Animals have become the go to model when probing the origins of functional 

connectivity. Functional networks that are very similar to those found in humans have 

been observed in rats and monkeys (Vincent, Patel et al. 2007; Pawela, Biswal et al. 

2008; Williams, Magnuson et al. 2010). The rat model is ideal for fMRI functional 

connectivity scans for several reasons: 

1) One major problem with human subjects is the lack of consistency between 

data obtained from one subject on multiple scan days. There are even greater 

inconsistencies in the data collected between patients (Xiong, Rao et al. 2000). Human 

brain anatomy is highly variable between human subjects; this makes ROI type analysis 

and functional region comparisons very difficult (Brett, Johnsrude et al. 2002). This data 

variability problem is ameliorated using rats that are bred to be consistently genetically 

identical. 

2) Because less stringent guidelines are placed on the gradient strength, primary 

magnetic field, and the amount of radio frequency (RF) a patient experiences (Specific 

absorption rate [SAR] limits) in animal scans as compared to human scans (Carmichael, 

Thornton et al. 2010), high field scanners (7T – 16T) with ultra-fast gradient sets are 

often used for animals. In the rodent model, our lab use a 9.4 T scanner (Bruker, 

Biosepec) to obtain fMRI images with spatial resolution of 200 μM in plane and temporal 

resolution of 100 ms. The high temporal resolution allows us to sample physiological 

noise and remove the contributing components, while the high spatial resolution 

compensates for the much smaller rodent brain as compared to human brain. 
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3) Rodents and humans are ~ 90% genetically similar, but more importantly for 

our research, functional connectivity studies conducted in rodents have resulted in similar 

functional networks, spatiotemporal patterns, and connectivity strengths as found in 

humans (Majeed, Magnuson et al. 2009; Williams, Magnuson et al. 2010). 

4) The ability to perform invasive procedures in rats that cannot be performed in 

humans provides the necessary motivation for using the rodent model. Surgical lesions, 

deep brain electrophysiological recording, chronically implanted electrodes, long scans, 

and histology are all procedures that can be performed in rats but not in humans. Each of 

these invasive procedures was necessary for my thesis work, and could be a critical tool 

for understanding the functional basis and the mechanisms underlying coherent LFFs in 

the brain. 

Lesioning of anatomical connections in a known functional network are only 

performed in humans in rare circumstances where it is necessary for disease treatment 

purposes. Humans with severe epilepsy sometimes undergo callosotomies as a treatment 

(Kim, Wang et al. 2008); however, it is difficult to find patients in this condition 

receiving this particular treatment that is willing to undergo research related scans before 

and after their procedure while dealing with a life threatening condition. Furthermore a 

patient with chronic seizures could hardly be considered a “normal” subject prior to the 

callosotomy, and it is unclear how the underlying disease would influence connectivity. 

In the rodent we will begin collecting data on a healthy animal, we will then sever a 

connection known to be central to functional connectivity, and we will collect data from 

this specific model. Simultaneously we can record the non-invasive fMRI signal and the 

functional origin of this signal, neural activity, and then compare the information.  
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CHAPTER 2 

FCMRI CONTRAST MODALITIES: BOLD VS. CBV  

  

In this chapter we explore functional insights obtained from BOLD and CBV 

resting state functional connectivity by evaluating the similarities in seed based 

functional connectivity maps, spectral information, and resulting spatiotemporal dynamic 

templates. We will use information garnered from the work in this chapter to determine 

which fMRI contrast would be ideal for the split-brain callosotomy experiment that will 

be the central focus of this work. The results of this chapter are also independently 

significant to the fMRI research field as they elucidate the physiological origins of 

spontaneous fluctuations by evaluating a more spatially sensitive contrast mechanism and 

comparing the findings to standard BOLD contrast. Much of the content in this chapter 

comes from my work presented in journal of Magnetic Resonance Imaging in 2010 

(Magnuson, Majeed et al. 2010). 

Clinical interest in mapping functional connectivity with MRI continues to grow 

as the technique has demonstrated the ability to detect alterations in patients with 

disorders such as Alzheimer’s (Wang, Liang et al. 2007), schizophrenia (Hoptman, 

D'Angelo et al. 2010), and depression (Cullen, Gee et al. 2009). Despite this promising 

evidence of sensitivity to clinically relevant changes, the interpretation of functional 

connectivity data remains limited by our incomplete understanding of the interactions 

between the local changes in neural activity, metabolism, and hemodynamics that lead to 

the low frequency BOLD fluctuations.  
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To elucidate the origins of functional connectivity, several groups have turned to 

animal models (Lu, Scholl et al. 2007; Pawela, Biswal et al. 2008; Shmuel and Leopold 

2008; Zhao, Zhao et al. 2008; Williams, Magnuson et al. 2010). Their work has 

demonstrated that functional connectivity similar to that observed in awake humans can 

be detected in other species such as rodents, even though anesthesia is typically required 

to facilitate imaging. These animal models provide a platform for investigations of the 

relationship between spontaneous neural activity, local metabolic changes, variations in 

blood flow, and MRI signal fluctuations (Logothetis, Pauls et al. 2001; Shmuel A 2007). 

The rodent brain in particular has been well-characterized by neuroscientists through 

electrophysiological recordings, selective lesioning, and behavioral studies, providing an 

extensive framework for the design and interpretation of functional connectivity 

experiments. Rodent models also offer the advantage of high inter-subject homogeneity, 

and the use of high-field dedicated small animal MRI systems provides excellent spatial 

and temporal resolution.  

In humans, functional connectivity studies are performed almost exclusively with 

BOLD contrast (Biswal, Yetkin et al. 1995; Lowe, Mock et al. 1998; Cordes, Haughton 

et al. 2000; Hampson, Peterson et al. 2002). In animal models, however, both BOLD and 

cerebral blood volume (CBV) weighting have been used to map correlated signal 

fluctuations (Lu, Scholl et al. 2007; Zhao, Zhao et al. 2008; Williams, Magnuson et al. 

2010), raising the issue of whether BOLD and CBV-weighted studies supply comparable 

measurements of functional connectivity. The BOLD signal comprises a complicated 

combination of several hemodynamic and metabolic properties including CBV, cerebral 

blood flow (CBF), and the local rate of oxygen consumption (CMRO2).  It is not yet 
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clear if spontaneous fluctuations in each of these parameters are equally linked to 

spontaneous fluctuations in neural activity. For example, 0.1 Hz oscillations in CBF and 

CBV have been observed with multiple modalities and are often attributed to vasomotion, 

and some studies have not found a clear link between these oscillations and electrical 

activity (Golanov, Yamamoto et al. 1994; Mayhew, Askew et al. 1996; Vern, Leheta et 

al. 1997). By measuring hemodynamic parameters that contribute to the BOLD signal, 

such as CBV, it may be possible to determine if particular contrasts were more closely 

related to neural activity than others. 

 Previous work with stimulus-induced activation suggests that CBV-weighted 

imaging may offer enhanced sensitivity and increased functional localization compared to 

BOLD (van Bruggen, Busch et al. 1998; Mandeville and Marota 1999), partially due to 

reduced contributions from large vessels. It is possible that this same property will 

improve localization in functional connectivity studies. In this study, BOLD and CBV-

weighted data were acquired sequentially from the same rat to determine the relative 

sensitivity and specificity of the two techniques. 

In addition to examining the steady-state characteristics of the BOLD and CBV 

functional connectivity maps, this study also compares the spatiotemporal dynamics of 

the signal fluctuations. Functional connectivity scans are conventionally analyzed using 

seed region-based cross-correlation techniques (Biswal, Yetkin et al. 1995; Lowe, Mock 

et al. 1998; Xiong, Parsons et al. 1999; Cordes, Haughton et al. 2000); however, a recent 

article by Majeed et al. (Majeed, Magnuson et al. 2009) describes a method for 

visualizing the spatiotemporal dynamics of the low frequency fluctuations. The data 

presented by Majeed et al. challenges standard interpretations of functional connectivity 
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maps acquired in the anesthetized rodent, as waves of BOLD signal propagate along the 

cortex, connecting areas that exhibit little correlation in their time courses.  

Dynamic spatiotemporal analysis of resting state functional connectivity (RSFC) 

scans has only been conducted using the BOLD signal to date. At short TRs, the BOLD 

signal is heavily weighted toward CBF due to inflow effects, which could be partially 

responsible for the spatiotemporal dynamics observed in Majeed’s work (Majeed, 

Magnuson et al. 2009). CBV-weighted imaging, using ultra-small paramagnetic iron 

oxide (USPIO) particles to provide contrast, is not typically susceptible to inflow effects 

because the signal from the blood is diminished due to the presence of iron oxide, so the 

presence of propagating waves in the CBV-weighted signal would suggest that they are 

not primarily due to inflow effects.  

The purpose of this study is twofold; first, to determine whether measurements of 

BOLD and CBV RSFC provide comparable information for functional connectivity 

mapping and second, to provide insight into the relative contribution of CBV information 

to the BOLD signal. BOLD and CBV-weighted data from the same rats were examined 

using spectral analysis, traditional cross correlation analysis, and dynamic spatiotemporal 

visualization. The results of this study show that BOLD and CBV provide similar maps 

of functional connectivity and demonstrate that the propagating waves previously 

observed in the BOLD signal can be detected with CBV-weighted imaging, suggesting 

that these dynamics are a general hemodynamic phenomenon widely observed in 

anesthetized rodents. 
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 Materials and Methods 

 Animal Preparation and Monitoring 

All experiments were performed in compliance with guidelines set by the 

Institutional Animal Care and Use Committee (IACUC) at Emory University. Ten male 

Sprague-Dawley rats weighing 200-300g were initially anesthetized with 2.5% isoflurane 

(mixed with 1:1 oxygen and room air) and maintained at 1.5% isoflurane throughout the 

experimental setup. Heart rate and blood oxygen saturation were recorded with a pulse 

oximeter placed on the hind paw. Body temperature was monitored with a rectal 

thermometer and maintained at 36º C - 38º C using an adjustable temperature water 

circulating pad. The respiratory rate was monitored using a pressure sensitive balloon 

placed under the rat’s chest. To provide forepaw stimulation for activation studies, two 

needle electrodes were inserted underneath the skin of the rat’s left forepaw between 

digits 2 and 3 and digits 3 and 4. The rat’s tail vein was catheterized to allow for injection 

of iron oxide contrast agent later in the experiment. Finally the rat was placed in the MRI 

cradle and the head was secured with a bite bar and ear bars.  

Once experimental setup was complete, the rat was given a subcutaneous bolus 

injection of 0.05 mg/kg medetomidine (Domitor, Pfizer, Karlsruhe, Germany). Three 

minutes after the medetomidine bolus, isoflurane was discontinued. Fifteen minutes post 

bolus, subcutaneous infusion of 0.1 mg/kg/hr medetomidine was initiated to maintain 

anesthetic depth for the duration of the experiment (Weber, Ramos-Cabrer et al. 2006).  
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fMRI 

Images were acquired on a 9.4 T / 20 cm horizontal bore Bruker BioSpec magnet 

interfaced with an AVANCE (Bruker, Billerica, MA) console. The magnet was equipped 

with an actively shielded gradient coil capable of producing a maximum gradient strength 

of 20 G/cm with a rise time of 120µs. A two-coil actively decoupled imaging setup was 

used (2cm surface coil for reception and 7 cm diameter volume coil for transmission; 

Bruker, Billerica, MA) to achieve maximal signal to noise ratio (SNR) over the cortical 

areas of interest. Shimming, to obtain homogeneity in the local magnetic field, was 

initially performed on a 6 mm x 6 mm x 6 mm region visually centered over the primary 

somatosensory cortex using FASTMAP (Gruetter 1993). A single-shot, multi-slice 

gradient echo planar imaging (EPI) sequence (TR=1500ms, echo time [TE] = 15ms, field 

of view [FOV] = 2.56 cm x 2.56 cm, matrix size = 64 x 64, slice thickness = 2 mm, 

effective bandwidth = 200kHz, flip angle = 31º) was used to acquire a time series of 180 

BOLD weighted images for the duration of a forepaw stimulation paradigm (A.M.P.I. 

Master-8 Stimulator; 4mA, 0.3ms duration, 9 Hz; 30 imaging volumes off - 20 on - 30 off 

- 20 on - 30 off - 20 on - 30 off).  

Activated voxels in the primary somatosensory cortex were identified using 

STIMULATE (Strupp 1996) which correlates the timecourses of voxels in the acquired 

image set with a box car function representing on and off times for stimulation.  

Following the forepaw stimulation scan, a BOLD weighted dataset was acquired without 

stimulation with the following parameters: TR = 300ms, TE = 15ms, number of 

repetitions = 1200, FOV = 2.56 cm x 2.56 cm, matrix size = 64 x 64, slice thickness = 

2mm, 1 slice centered over the forepaw regions of the primary somatosensory cortex 
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(located using data from the preceding stimulation scan). Manual shimming was then 

performed on the single slice to remove any local field inhomogeneities. The same 

imaging setup was repeated two more times to obtain a total of three sets of BOLD 

weighted image series. After BOLD scans, 2% isoflurane was administered to further 

sedate the rat to allow for tail vein infusion of 5 mg/kg of USPIO particles (Molday Ions, 

BioPal, Worcester, MA) over a period of ~1 minute. Isoflurane was discontinued after 

USPIO infusion was completed. Thirty minutes after USPIO injection, three sets (1 

stimulation scan and 1 resting state scan) of images were acquired with identical 

parameters to the resting state BOLD images but with cerebral blood volume (CBV) 

weighting due to USPIO particles.  

Preprocessing 

All data processing was performed using MATLAB (MathWorks, Natick, MA). 

Each time course used for analysis was de-meaned (mean value of timecourse subtracted 

from each data point), quadratically detrended (removing baseline drifts in the signal), 

and normalized by converting the data to percentage difference relative to mean voxel 

intensity. Image signal to noise ratio (mean brain signal / standard deviation of the 

background noise), temporal variation (variance of demeaned and detrended timecourse 

from the primary somatosensory cortex [SI]), and activation percent changes were 

calculated for the CBV and BOLD data sets.  The primary somatosensory cortex was 

localized by cross-correlating time courses from the forepaw stimulation scan with a box 

car reference function representing stimulus on and off times. A seed region for cross 

correlation analysis of the resting state data was constructed from the nine voxels which 

were most highly correlated with the stimulus reference function.   
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Connectivity Analysis 

Additional 3x3 voxel ROIs were selected based on anatomy in the secondary 

somatosensory cortex (SII) and the caudate/putamen (CP) complex directly from the EPI 

images (no visible distortion was apparent in the EPI images which would negatively 

affect the manual selection of ROIs; Figure 2 contains the actual EPI images with 

locations of seed ROIs) for further cross-correlation analysis (ROIs were chosen in 

accordance with the Paxinos and Watson rat brain anatomical atlas (Paxinos G 2005)). A 

6x6 average correlation matrix representing data from all rats was calculated from the 

average time courses from six seed regions (left and right SI, SII, and CP) in order to 

visualize the strength of connectivity between the regions.  

Spectral Information 

Power spectra were obtained for the time courses of selected ROIs by using the 

Welch method (8 sections with 50% overlap, Hamming window). Visual inspection of 

the power spectra revealed that peak power was shifted to higher frequencies for CBV 

data as compared to BOLD.  Time courses were bandpass filtered based on initial 

inspection of the power spectra using a 3
rd

 order butterworth filter to retain contributions 

from a 0.2 Hz frequency window (0.05 Hz-0.25 Hz for BOLD, 0.1 Hz-0.3 Hz for CBV). 

The window was shifted higher by 0.05 Hz for CBV data to prevent attenuation of the 

peak typically seen at 0.2 Hz. Nine voxels in SI activated by forepaw stimulation were 

used as the seed region for cross-correlation analysis of resting state data. The average 

time course representing the voxels in the selected ROI was correlated with the time 

course from voxels throughout the image and a correlation map was obtained.   



www.manaraa.com

32 
 

Spatiotemporal Dynamics 

Spatiotemporal dynamics of the low frequency signal fluctuations were analyzed 

using image by image visualization of data normalized and filtered to contain only low 

frequencies (Majeed, Magnuson et al. 2009). The resulting images were displayed as a 

movie in order to locate visually detectable spatiotemporal patterns or events. If 

spatiotemporal patterns in the BOLD and CBV signals contain similar time and spatial 

signatures this would suggest that the BOLD and CBV MRI signals are affected similarly 

by coordinated neural activity.  

 

Results 

SNR, Temporal Variance, and Signal Change During Stimulation 

SNR, temporal variance, and average percent change in signal during stimulation 

were calculated for CBV and BOLD (Table I). The use of USPIOs to create CBV 

contrast leads to dose dependent (USPIO dose) decreases in image signal-to-noise ratio 

and a dose dependent increase in the absolute value of the signal percent change during 

activation (Lu, Scholl et al. 2007). As expected in this study SNR decreased significantly 

with the addition of USPIOs (p<0.01). The absolute value of the average percent change 

during stimulation was found to be significantly greater for BOLD as compared to CBV 

(p<0.01). The average temporal variance for time courses representing spontaneous 

activity in SI was similar for CBV and BOLD (p = 0.36); however the difference in 

temporal variance between CBV and BOLD was significant in the SII and CP regions (p 

<0.01). The USPIO concentration of 5 mg/kg used in this experiment was chosen based 
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on preliminary experiments to approximately match absolute maximum signal percentage 

change ( ~2% from baseline) observed in the BOLD images during forepaw stimulation. 

 

Table 1: BOLD and CBV temporal variance, SNR, and percentage signal change during forepaw 

simulation calculated using data obtained from ten rats. 

      BOLD   CBV P-Vals 

Temporal Variance 
     

 
SI 

 
0.72% ± 0.32% 0.78% ± 0.39% 0.36 

 
SII 

 
1.19% ± 0.42% 1.48% ± 0.62% < 0.01 

 
CP 

 
0.72% ± 0.29% 1.26% ± 0.45% < 0.01 

Spatial SNR 
 

55.25 ± 16.58 46.09 ± 13.25 < 0.01 

Activation % Change   1.91% ± 0.59% -1.41% ± 0.39% < 0.01 
 

 

Spectral Analysis 

Figure 1 shows the individual power spectra for two rats and the average power 

spectra of all ten rats for time courses from the SI for BOLD and CBV resting state scans. 

The power spectra from the BOLD scans had maximum power in the very low frequency 

range with a broad distribution of power across the low frequencies (< 0.3 Hz). There 

was less power in the very low frequency range in the CBV scans, and the distribution of 

power was more localized than in the BOLD scans, with a distinct peak often appearing 

near 0.2 Hz. The center of mass for the low frequency power (< 0.3Hz) for BOLD 

occurred at 0.13 Hz. The center of mass for all low frequency power (< 0.3 Hz) in the 

CBV scans was localized to 0.16 Hz. For both CBV and BOLD power spectra, just 

before 0.3 Hz power was reduced abruptly to a baseline level (low power noise at all 

frequencies) in a nearly identical pattern. 
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Figure 1: Average CBV and BOLD power spectra for two representative rats. The average 

BOLD and CBV power spectra for all ten rats is shown in the bottom plot. BOLD data exhibits 

higher power in the very low frequencies (less than 0.1 Hz) and a broader distribution of power 

throughout the low frequency range, while the CBV data often exhibits a distinct peak localized 

near 0.2 Hz. The respiratory contribution to the resting state data set is visible in the BOLD and 

CBV power spectra (clearly evident in Rat 1 and 2) around 1.6 Hz and 1.1 Hz respectively (95 

and 65 breaths per minute).  
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Seed-based Correlation Analysis 

Representative cross-correlation maps of CBV and BOLD for all three seed 

regions (SI, SII, and CP) are shown in Figure 2. CBV cross correlation was significantly 

more localized than BOLD in the cortex contralateral to the seed region in band passed 

(0.05 – 0.25 Hz BOLD; 0.1 – 0.03 Hz CBV) SI and SII data (for the SI region). BOLD 

connectivity based on a seed region in the left SI resulted in an average of 45 ± 17 voxels 

exceeding half of the maximum cross correlation value in the bilaterally symmetric area 

as compared to 26 ± 13 for CBV (p<0.01).The average cross correlation value (of voxels 

greater than half of the maximum correlation value) for voxels in the SI BOLD data was 

0.50 ± 0.15 in the 3x3 region bilaterally symmetric to the ROI while the average cross 

correlation in the SI CBV data was 0.25 ± 0.08 (p< 0.01). Connectivity and extent values 

for SI, SII, and CP are located in Table 2. 

 

Table 2: BOLD and CBV functional connectivity statistics calculated from data obtained in ten 

rats. 

      BOLD   CBV P-Vals 

Mean CC > Half Max 
     

 
SI 

 
0.50 ± 0.15 0.25 ± 0.08 < 0.01 

 
SII 

 
0.45 ± 0.13 0.23 ± 0.10 < 0.01 

 
CP 

 
0.31 ± 0.10 0.17 ± 0.03 < 0.01 

Number of Pixels > Half Max 
    

 
SI 

 
45 ± 17 pixels 26 ± 13 pixels < 0.01 

 
SII 

 
27 ± 9 pixels 17 ± 11 pixels < 0.01 

  CP   30 ± 13 pixels 13 ± 6 pixels < 0.01 
 

  To determine whether the 0.2 Hz peak observed in the CBV data had different 

properties from the lower frequency range typically used in functional connectivity 

studies, connectivity maps were created using only the low frequency range (< 0.1 Hz) 
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for CBV and BOLD (Figure 2; first column) in SI. BOLD and CBV connectivity strength 

for the lower frequency data resulted in an increase in average connectivity values (0.55 

± 0.12 and 0.34 ± .14 respectively) which was significant (p = 0.04 and p < 0.01 

respectively). The spatial extent of connectivity in the contralateral cortex was reduced 

slightly for BOLD (voxels greater than half max connected to seed = 43 ± 18) and 

increased slightly for CBV (voxels greater than half max connected to seed region = 26 ± 

15); the change was not significant for BOLD (p = 0.57) or for CBV (p = 0. 84). 

Although the spatial extent of connectivity in the contralateral cortex does not change 

significantly, the number of voxels connected to the seed region outside of the 

contralateral cortex greatly increases for CBV weighted scans. The low pass filter images 

in Figure 2 show increased connectivity in subcortical brain regions for CBV weighted 

images while the low pass BOLD connectivity maps look almost identical to the band 

pass maps. The low pass CBV images also contain several voxels located in the skull 

weakly connected to the seed region.  Low frequency connectivity in CBV scans based 

on a seed region in SI resulted in widespread, but relatively weak cross correlation 

throughout cortical and subcortical areas which was not seen in the higher frequency (0.1 

Hz – 0.3 Hz) cross correlation analysis. Low frequency BOLD correlation did not exhibit 

the widespread connectivity pattern seen in the CBV scans (Figure 2).  
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Figure 2: Cross correlation maps for CBV and BOLD resting state scans. Correlation maps from 

a typical rat are overlaid on the EPI image used to create the map. Locations of the seed regions 

are shown in the first row. Bilateral connectivity is evident for BOLD and CBV for all three seed 

regions, though the strength of the correlation is weaker for CBV-weighted scans. The first 

column, labeled SI ‘low pass’, shows cross correlation maps for spontaneous fluctuation < 0.1 

Hz; the remaining three columns are based on frequencies between 0.05 Hz - 0.25 Hz for BOLD 

and 0.1 Hz – 0.3 Hz for CBV. The BOLD functional connectivity maps exhibit little dependence 

on the frequency range used, while the cross correlation in the CBV maps created with the low 

pass filter appears less localized.   

 

 

Averaged cross correlation matrices (all ten rats) showing the connectivity 

between averaged time courses in six regions of interest (right SI, SII, CP and left SI, SII, 

and CP) are shown in Figure 3. The pattern of connectivity between contralateral 

analogues is similar for BOLD and CBV (highest for SI and lowest for CP); however, the 

correlation values for BOLD scans is significantly higher for all regions. The average 

value of correlation between left and right SI was 0.66 for BOLD and 0.31 for CBV. 
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Anatomically selected seed regions in the SII region resulted in average bilateral 

correlation values of 0.58 for BOLD and 0.22 for CBV, and seed regions selected in the 

CP resulted in average bilateral cross correlation strength of 0.37 for BOLD and 0.12 for 

CBV. Weak correlation is observed between non-analogous areas for both contrast 

mechanisms.  

 

 

Figure 3: Average cross correlation matrix showing the strength of connectivity between six 

areas (left and right SI, SII, and CP) for CBV and BOLD. For both contrast mechanisms, the 

highest correlation values are between left and right SI, followed by left and right SII and left and 

right CP. Little correlation is observed between adjacent ipsilateral areas or non-analogous areas 

in contralateral hemispheres. 

 

Spatiotemporal Dynamics 

Spatiotemporal analysis was conducted using image to image visualization of low 

frequency fluctuations in the filtered, normalized BOLD and CBV resting state data sets 

following the method described by Majeed et al. (Majeed, Magnuson et al. 2009). Both 
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data sets showed well organized bilateral waves of increased signal in the optimal 

frequency range (BOLD - 0.05 Hz – 0.25 Hz; CBV - 0.1 Hz to 0.3 Hz) that propagated 

along the cortex from SII towards the primary motor cortex (MI) (Figure 4). These waves 

occurred often within each 6 minute resting state data set.  The very low frequency range 

for BOLD and CBV (<0.1Hz) was also analyzed for propagating waves.  Propagating 

waves in this low frequency range were seen sparsely for BOLD and never for CBV.  

The waves occurred spontaneously and typically occurred in groups of two or 

three repeating waves before ceasing for several seconds or several minutes. The time 

from the increased signal inception in SII to its disappearance in MI is defined as the 

wave propagation time. Propagation of the waves from SII to MI took approximately four 

seconds for the 0.05 Hz – 0.25 Hz BOLD data and approximately three seconds for the 

0.1 Hz – 0.3 Hz CBV data. The increased signal intensity moved toward MI and 

eventually fades away (Figure 4; last frame for BOLD and CBV). These propagation 

times are similar to those measured by Majeed et al. in the α-chloralose anesthetized rat 

(Majeed, Magnuson et al. 2009).  
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Figure 4: Propagating waves of activity from SII towards MI in BOLD and CBV resting state 

scans. a.) 0.05 Hz – 0.25 Hz filtered BOLD scan. Propagation from SII to MI takes approximately 

four seconds. b.) 0.1 Hz – 0.3 Hz filtered CBV scan. Propagation from SII to MI occurs in 

approximately three seconds. 
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 Summary of Results and Discussion 

The work described here directly compares two types of contrast (BOLD and 

CBV) used in previous functional connectivity rodent studies. Spontaneous fluctuations 

of the BOLD signal arise from increasing and decreasing metabolic demand as a function 

of local neural activity. The vasculature responds to this metabolic demand by increasing 

the volume (CBV) and flow (CBF) of blood to an area. Changes in oxygen metabolism 

(CMRO2), CBV, and CBF can be measured independently with MRI, and much research 

has focused on how changes in these parameters in response to stimulation give rise to 

the task-related BOLD signal. However, the relationship between the recorded BOLD 

and CBV signals in the absence of a task has not been explored. 

Comparison with Previous Functional Connectivity Studies in Rodents 

The functional connectivity maps obtained with BOLD and CBV weighted 

imaging in this study are similar to those reported in previous rodent studies. BOLD 

studies performed by Pawela and Zhou also found strong connectivity between bilaterally 

symmetric SI, SII, and CP regions (Pawela, Biswal et al. 2008; Zhao, Zhao et al. 2008). 

Lu et al. observed similar connectivity between bilaterally symmetric SI regions using 

CBV (Lu, Scholl et al. 2007). While these functional connectivity studies were performed 

with a longer TR (1 – 1.5 s) and no correction for physiological noise, the results were 

similar to those obtained in this study, suggesting that respiratory noise may not have a 

significant impact on functional connectivity in rodent models. Majeed et al. utilized a 

TR of 100 ms, short enough to resolve the primary cardiac contribution as well as the 

primary respiratory peak (Majeed, Magnuson et al. 2009). The functional connectivity 

maps were similar to those presented here suggesting that cardiac noise contamination 
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does not alter correlation patterns in rodents; however, Majeed’s rats were anesthetized 

with alpha-chloralose and were mechanically ventilated. We have mapped the location of 

contributions from the respiratory signal in the freely breathing medetomidine 

anesthetized rats from this study (Figure 5). It does not appear that respiratory noise 

corrupts the functional connectivity data because of its localization to the base and edges 

of the brain for both BOLD and CBV. At the TR used in this study (300ms), we are 

unable to resolve the contributing signal from cardiac noise. 

 

 

Figure 5: Map of peak in power spectrum repesenting respiratory noise. The majority of the 

noise is localized to the base and edge of the brain. This should not influence functional 

connectivity mapping. 

 



www.manaraa.com

43 
 

Most functional imaging studies conducted in rodent models are performed in 

anesthetized animals, and the choice of anesthesia can impact the results. α-chloralose 

has traditionally been the primary anesthesia for functional imaging in the rat, but it 

requires intubation and mechanical ventilation, cannulation of the femoral artery for 

blood gas monitoring, and subsequent sacrificing of the animal at the end of the 

experiment (Keilholz, Silva et al. 2004; Keilholz, Silva et al. 2006; Lu, Zuo et al. 2007). 

In this experiment a continuous infusion of medetomidine anesthesia is used, which 

allows for longitudinal studies (Weber, Ramos-Cabrer et al. 2006). The results are similar 

to functional connectivity experiments carried out in animals anesthetized with α-

chloralose (Lu, Zuo et al. 2007; Majeed, Magnuson et al. 2009).  

Isoflurane was administered to each rat for ~2 minutes during tail vein injection 

of the USPIOs for CBV imaging. Isoflurane could potentially alter the vascular response 

and could be partially responsible for the change in the LFFs. Two control rats were 

imaged to ensure that the brief administration of isoflurane nor the injection process was 

responsible for the change in the power spectrum observed between BOLD and CBV 

scans. Each of the control rats were administered isoflurane while injecting a dose of 

saline equal to the dose of USPIOs they would have otherwise received. Neither control 

rat exhibited a change in functional connectivity, power spectra, or SI activation to a 

forepaw stimulation as compared to the previous BOLD scans after administration of the 

isoflurane and saline.   

BOLD vs CBV Weighting for Functional Connectivity Mapping 

Similar spatial patterns of connectivity were observed for both BOLD and CBV-

weighted data using seed regions in SI, SII, and CP. The strongest correlation was 
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observed between bilaterally symmetric regions, with very little correlation between non-

analogous regions in either the ipsilateral or contralateral hemisphere. These findings are 

in agreement with previous studies of functional connectivity in the rodent, which 

predominantly found bilateral patterns of correlation (Pawela, Biswal et al. 2008; Zhao, 

Zhao et al. 2008; Williams, Magnuson et al. 2010).  

Cross correlation analysis conducted with the lower frequency spontaneous 

fluctuations (< 0.1 Hz) resulted in a global increase in the number of voxels connected to 

the seed region for CBV scans; however, there was very little change in the connectivity 

patterns for the BOLD data. The widespread connectivity in the low frequency CBV data 

is not unexpected considering there is less power located in the low frequency (< 0.1 Hz) 

portion of the spectra as compared to the BOLD spectra. Correlation of the seed region 

with such a widespread group of voxels including several voxels in the skull (Figure 2; 

CBV - low pass) suggests an increased contribution from noise sources as opposed to 

correlated CBV signals. The high power in the low frequency BOLD signal may 

represent other physiological processes, such as metabolic fluctuations that are also tied 

to neural activity, so the functional connectivity maps appear unchanged. 

We chose the dose of USPIOs (5mg/kg) based upon preliminary experiments so 

that approximately equivalent temporal variance and percent signal change during 

stimulation were obtained in the BOLD and CBV-weighted scans. Similar temporal 

variance was considered a priority since it provides some measurement of the relative 

amplitude of the spontaneous signal fluctuations. While the temporal variance was well-

matched for BOLD and CBV scans in this study, the absolute percent change during 

activation was significantly higher for the BOLD scans (p<0.01). This may indicate that 
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the fluctuations in the CBV-weighted scans contained relatively lower contributions from 

hemodynamic processes and relatively stronger influences from system noise, in 

agreement with the observation that SNR was reduced in CBV weighted images. This 

reduction in SNR may account for the lower correlation values observed in the CBV data.  

A USPIO concentration of 5 mg/kg was used for CBV scans. In order to optimize 

dosing for functional connectivity studies, several combinations of USPIO concentrations 

and TRs were tested in preliminary experiments. USPIO doses between 1 mg/kg and 15 

mg/kg were tested with TRs ranging from 100 ms to 1000 ms. A TR of 300 ms was 

chosen to allow the sampling and removal of the primary respiratory component while 

maintaining acceptable SNR. With this TR, a USPIO concentration of 5mg/kg provided 

approximately the same percentage change during stimulation and level of temporal 

variance observed in BOLD studies. The ideal dose of iron oxide for functional 

connectivity studies may be different from the dose used for functional studies, 

particularly when the available SNR is limited due to the use of a short TR. Higher 

percent changes during stimulation in CBV-weighted scans can be achieved by using 

higher doses of USPIO (Keilholz, Silva et al. 2006; Lu, Zuo et al. 2007), but the resulting 

signal loss may degrade the quality of functional connectivity maps. Previous CBV 

functional connectivity studies in rodents employed larger doses of USPIO than were 

used in the present study, but cross-correlation values were higher in our study.  

The high degree of similarity between the functional connectivity maps created 

with BOLD and CBV suggests that results from studies using different contrast 

mechanisms should be readily comparable. Because CBV-weighted scans have a lower 

SNR, BOLD is potentially a better choice for studies with high temporal resolution and 
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limited SNR. The use of BOLD contrast also eliminates the need for exogenous contrast 

agent. 

Spectral Differences Between BOLD and CBV 

Recent work in the α-chloralose-anesthetized rat reported two low frequency 

peaks with different characteristics (Majeed, Magnuson et al. 2009), motivating the 

further exploration of frequency-dependent differences in BOLD and CBV data in this 

study. Resting state data collected in the rat model using the BOLD signal reveals LFFs 

with relatively uniform power within a frequency range of 0.01 Hz - 0.30 Hz, with one or 

two localized low frequency peaks, similar to previous experiments in α-chloralose-

anesthetized rats (Lu, Scholl et al. 2007; Majeed, Magnuson et al. 2009; Williams, 

Magnuson et al. 2010). CBV weighted data collected from the same animals exhibit 

different spectral properties, with a strongly localized peak at ~ 0.2 Hz.  The differences 

in the two power spectra are related to the frequency signatures of the components 

contributing to the measured signal. The BOLD spectrum is derived from a combination 

of several signals (CBF, CBV, CMRO2) with independent frequency contributions which 

results in a relatively uniform power band between 0.0 Hz – 0.3 Hz. The CBV spectrum 

ideally contains only one signal, blood volume changes, which oscillate at approximately 

0.2 Hz during resting state. Despite the differences in the power spectra obtained with 

CBV and BOLD weighting, the resulting connectivity maps are very similar, suggesting 

that the processes contributing to different frequency bands share a common origin. 

In addition to fluctuations arising from spontaneous variations in neural activity, 

low frequency oscillations in these signals may also arise from sources that may or may 

not be closely tied to neural activity. Oscillations of approximately 0.1 Hz have been 
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observed in CBF using laser-Doppler flowmetry (Golanov, Yamamoto et al. 1994), and 

in combination CBV, CBF, and oxygen saturation data using reflective light imaging 

(Mayhew, Askew et al. 1996). While some studies report a relationship between these 

oscillations and neural activity (Golanov, Yamamoto et al. 1994), others do not (Vern, 

Leheta et al. 1997). It appears that these fluctuations can be decoupled from neural 

activity, as they have also been observed in isolated arteries (Osol and Halpern 1988). It 

is therefore possible that particular hemodynamic processes exhibit slow oscillations that 

are partially related to neural activity and partially due to other factors. If so, it may be 

possible to identify frequency ranges and/or hemodynamic contrasts that are more 

specific to neural activity than the broadband BOLD signal typically used. Combined 

with Majeed et al.’s study showing that low and high frequency peaks in the BOLD 

signal from α-chloralose-anesthetized rats have different spatiotemporal dynamics, our 

finding that the CBV power spectra exhibits a localized peak in the higher frequencies as 

compared to the broader BOLD signal suggests that perhaps the higher frequency 

fluctuations are linked to ongoing regulatory processes. In support of this idea, the 

patterns of spatiotemporal dynamics linked to the higher peak in both types of scans are 

highly reproducible, both within and across animals. The regulatory processes could be 

vascular, neural, or a combination of both. An intriguing possibility is that functional 

connectivity is mediated by both a low frequency regulatory ‘driver’, possibly in the 

brainstem (Drew, Duyn et al. 2008) and by communication between strongly connected 

areas, which may preferentially contribute to different frequency ranges of the BOLD 

fluctuations.  However, in this study little difference was observed between functional 

connectivity mapped with BOLD as compared to CBV. This would suggest that the 
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regulatory processes either dominate the fluctuations used to map functional connectivity 

in the anesthetized rodent, or that any vasoregulatory processes are tightly tied to neural 

activity and provide nearly identical information about functional connectivity. Further 

work in human subjects or unanesthetized animals would assist in addressing these 

issues. 

Spatiotemporal Dynamics 

The detection of a spatiotemporal pattern of propagation from lateral to medial 

cortical areas reproduces the results recently reported by Majeed et al., but at a lower 

field strength (9.4 T rather than 11.7 T) and using a different anesthetic (medetomidine 

instead of alpha-chloralose). The number of occurrences of the waves in this study was 

lower than that previously observed under alpha-choloralose, possibly due to a change in 

magnetic field strength or an effect of altered vascular response, neuro-vascular coupling, 

or alterations in the underlying neural triggers in response to the anesthesia being used. 

These waves of signal were also observed in CBV-weighted images for the first time. 

These findings demonstrate that the patterns of spatiotemporal propagation are common 

to multiple contrast mechanisms and anesthetics in the anesthetized rat. 

In the previous work by Majeed et al., a TR of 100 ms was used, making the 

images sensitive to the effects of inflowing blood (and thus CBF fluctuations). This study 

also utilized a relatively short TR (300 ms; chosen to maximize signal while allowing the 

primary contribution from respiration to be removed by filtering), but the use of USPIO 

should reduce or eliminate the signal from the inflowing blood, suppressing inflow 

effects. Nevertheless, a well-defined peak at 0.2 Hz was observed, and the spatiotemporal 

dynamics of the CBV fluctuations were similar to those observed in the previous study 
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with BOLD, suggesting that inflow effects are not the primary source of the 

spatiotemporal waves observed in the cortex. 

The presence of propagating waves in the cortex illustrates the limitations of 

traditional functional connectivity studies. In both BOLD and CBV data, little correlation 

is observed between SI and SII even though some type of connectivity is present, since 

the signal waves clearly move between the two areas. The lack of correlation is likely due 

to the time lag (2-3 s) between the two areas, rather than a lack of relationship between 

their time courses. 

It is important to further explore the relationship between neural activity and the 

physiological processes (CBF, CBV, and CMRO2) with low frequency components 

contributing to the BOLD resting state signal. We have imaged the CBV signal, one 

contributor to the BOLD signal, independently to determine its contribution to the overall 

BOLD signal. The results show that while the power spectrum of the CBV signal is 

different from that of the BOLD signal, both connectivity maps and spatiotemporal 

dynamics are similar for the two modalities. This may indicate that functional 

connectivity (FC) is primarily reflective of coordinated fluctuations within the 

vasculature which may be fully or partially driven by neural activity. The links between 

neural activity and vasomotion are still unclear and further experiments will be necessary 

to better understand the origin of the spontaneous MRI signal oscillations (Sirotin and 

Das 2009). 
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CHAPTER 3 

ISOFLURANE AND DEXMEDETOMIDINE’S TIME DEPENDENT 

EFFECT ON FUNCTIONAL CONNECTIVITY 

 

Introduction 

Animal models are a powerful tool, allowing for the detailed and often invasive 

investigation into analogues of human disease, structure, and function. Animal models 

have provided an ideal platform to study the origin and functions of the BOLD signal and 

functional connectivity in fMRI; however, one complication is that anesthesia is 

commonly required to prevent movement and alleviate pain or anxiety (Keilholz, Silva et 

al. 2004; Keilholz, Silva et al. 2006; Weber, Ramos-Cabrer et al. 2006). Anesthetic 

agents introduce confounding influences to the function of the neural and vascular 

architecture of the brain (Zhao, Zhao et al. 2008; Pawela, Biswal et al. 2009; Magnuson, 

Majeed et al. 2010; Williams, Magnuson et al. 2010; Pan, Thompson et al. 2011; Pan 

2013). Anesthesia directly affects basal neuronal activity as well as the coupling between 

neurons and the vasculature (Nakao, Itoh et al. 2001); understanding an anesthesia’s 

effect on neural activity and BOLD data is vital for interpreting functional data. 

In 2005 Austin, et al. published data indicating that the BOLD response to a fixed 

stimulus was variable as a function of time under α–chloralose anesthesia (following 

halothane induction); specifically, the spatial extent and peak amplitude response to the 

stimulus both increased several hours post α–chloralose induction (Austin, Blamire et al. 

2005). Austin, et al. suggest that changes in the BOLD response under α–chloralose was 
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a product of combined effects of halothane and α–chloralose on neuronal activity or 

changes in vascular response and neurovascular coupling as a result of anesthesia. If the 

changes observed are related to changes in vascular tone, then variations in the BOLD 

response over time should theoretically manifest in the spontaneous BOLD signal as 

well.  

Slow fluctuations in the BOLD signal (presumed to be linked to spontaneous 

neural activity) have been used to map functional connectivity, a term used to describe 

spectrally and temporally coherent activity arising in different areas of the brain (Biswal, 

Yetkin et al. 1995; Bullmore, Rabe-Hesketh et al. 1996; Zhao, Zhao et al. 2008; 

Magnuson, Majeed et al. 2010; Williams, Magnuson et al. 2010). The frequency of the 

fluctuations depends on the type of contrast (Magnuson, Majeed et al. 2010) and the 

anesthetic agent (Majeed, Magnuson et al. 2009). Spatiotemporal dynamic analysis 

reveals patterns of quasi-periodic, often bilaterally symmetric, spatially propagating 

patterns of functional activity observed both in humans (Grigg and Grady 2010; Majeed, 

Magnuson et al. 2011) and in the anesthetized rat (Majeed, Magnuson et al. 2009; 

Majeed, Magnuson et al. 2011). In the work presented here, we evaluate the time-

sensitive effects of dexmedetomidine anesthesia (following initial administration of 

isoflurane anesthesia) on traditional functional connectivity MRI, the frequency specific 

signatures of the BOLD fluctuations, and the occurrence of spatiotemporal dynamics. 

Isoflurane is commonly used to induce anesthesia, perform surgical procedures, 

and maintain a deep level of unconsciousness in rodents during setup for fMRI (Weber, 

Ramos-Cabrer et al. 2006; Pawela, Biswal et al. 2008; Zhao, Zhao et al. 2008; Pawela, 

Biswal et al. 2009; Williams, Magnuson et al. 2010). Anesthesia is typically switched to 
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an agent that is less suppressive of neural activity for the imaging portion of the 

experiment, although isoflurane has been used during imaging as well (Liu, Zhu et al. 

2012; Guilfoyle, Gerum et al. 2013; Kalthoff, Po et al. 2013). Isoflurane’s anesthetic 

mechanism is not well understood, but it is known that is acts on GABA receptors, 

potassium channels, and the GLT1/EAAT2 glial glutamate transporter, all resulting in 

complex interrelationships producing the desired anesthetic state (Ferron, Kroeger et al. 

2009). At high isoflurane doses (>1.8%) widespread cortical neural burst suppression 

results in reduced cortical excitation (Antunes, Golledge et al. 2003; Ferron, Kroeger et 

al. 2009) and reduced spatial sensitivity of functional connectivity (Liu, Zhu et al. 2012), 

while at lower dosages (<1.5%) functional activity and connectivity remain somewhat 

intact (Hutchison, Mirsattari et al. 2010; Liu, Zhu et al. 2012; Guilfoyle, Gerum et al. 

2013; Kalthoff, Po et al. 2013). It has been demonstrated that it takes nearly an hour 

following isoflurane discontinuation for the end tidal volumes of isoflurane to drop below 

0.1% following relatively short isoflurane paradigms (Sommers, van Egmond et al. 

2009). This residual isoflurane likely introduces lingering effects on both neural activity 

(continued neural suppression) and the vasculature (continued vasodilation) that must be 

considered.  

Dexmedetomidine is a α2-adrenergic receptor agonist which selectively binds to 

and stimulates α2-adrenergic receptors after crossing the blood-brain barrier. It is also a 

vasoconstrictor (Asano, Koehler et al. 1997). Dexmedetomidine acts by inhibiting 

adenylyl cyclase activity, causing a reduction of firing rates of locus coeruleus 

noradrenergic neurons, thus leading to sedation (Nelson, Lu et al. 2003). Unlike many 

other anesthetics that deeply suppress central nervous system (CNS) activity (Rehberg, 
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Xiao et al. 1996), dexmedetomidine induces a neural state very similar to natural sleep 

(Nelson, Lu et al. 2003) while simultaneous causing muscular relaxation. The drug was 

previously formulated as medetomidine, which contains the active enantiomer, 

dexmedetomidine used in the current experiment. (In 2009, Pfizer discontinued 

medetomidine [Domitor] in their veterinary line and switched to dexmedetomidine 

[Dexdomitor]). Both drugs have nearly identical effects on the rodent; however, the 

dosing of dexmedetomidine is half that of medetomidine (Granholm, McKusick et al. 

2007).  

In previous experiments using (dex)medetomidine, our lab has observed time-

dependent effects of medetomidine on functional connectivity measured with resting state 

fMRI, functional network spatiotemporal dynamics (Majeed, Magnuson et al. 2009; 

Grigg and Grady 2010), and spectral characteristics of functional time-courses. 

Consequently, we designed a longitudinal experimental paradigm using two anesthetic 

regiments, one with a short duration of isoflurane (30 minutes; comparable to typical 

studies using isoflurane for induction and setup (Weber, Ramos-Cabrer et al. 2006; 

Pawela, Biswal et al. 2009; Hutchison, Mirsattari et al. 2010)) prior to functional imaging 

and another with a long isoflurane duration (3 hours; comparable to studies involving 

complex surgical procedures such as combined electrophysiology-fMRI (Pan, Thompson 

et al. 2011)) prior to imaging; both paradigms are followed by the same dosage of 

dexmedetomidine anesthesia concurrent with a 5.75 hour imaging series.  

The goals of this work are twofold; first, to evaluate possible lingering, duration 

dependent effects of isoflurane on functional connectivity, and secondly to evaluate 

evolving changes in the rat’s functional state based upon long term use of 
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dexmedetomidine anesthesia. We found that an extended isoflurane paradigm attenuates 

functional activity for a longer duration as compared to a shorter isoflurane paradigm. 

Furthermore, we also observed a significant evolution of functional metrics as a result of 

long durations of dexmedetomidine use under the currently accepted and refined 

dexmedetomidine sedation paradigm (Pawela, Biswal et al. 2009).  

 

Materials and Methods 

Animal Preparation and Physiological Monitoring 

All experiments were performed following guidelines set by the Emory 

Institutional Animal Care and Use Committee (IACUC). Eleven male Sprague–Dawley 

rats (200–300 g) were anesthetized with 2% isoflurane mixed with ~1:1 oxygen and room 

air while undergoing experimental setup. The rat was placed in the MRI cradle and the 

head was secured with a bite bar and ear bars. Heart rate and blood oxygen saturation 

percentage were recorded with a pulse oximeter placed on the rear left paw. Body 

temperature was monitored with a rectal thermometer and maintained at ~37° C using an 

adjustable warm water pad. Respiratory rate was also monitored by using a pressure-

sensitive balloon placed under the rat’s chest.  

Once setup was complete, the rat was left to rest in the cradle under 2% isoflurane 

until total time under isoflurane reached 3 hours (long isoflurane - experimental group 1) 

or 30 minutes (short isoflurane – experimental group 2). . For the long isoflurane group, 

after 2 hours and 30 minutes, isoflurane was reduced to 1.5% for 30 minutes before the 

induction of dexmedetomidine (Dexdomitor, Pfizer, Karlsruhe, Germany). The long 



www.manaraa.com

55 
 

isoflurane “wait period” was chosen to replicate our previous experiments where it was 

necessary to keep the rat under isoflurane for long periods of time while surgical 

procedures were performed (Pan, Thompson et al. 2011). The short isoflurane group 

replicates the typical setup time for a rodent to be anesthetized and prepared for scanning 

where no surgery or complex setup is involved. Following the wait period, the short 

isoflurane group was switched directly from 2% isoflurane to dexmedetomidine.   

A subcutaneous bolus injection of 0.025 mg/kg dexmedetomidine was 

administered to the rat’s upper right leg. Five minutes after the dexmedetomidine bolus, 

isoflurane was discontinued. Fifteen minutes post-bolus, subcutaneous infusion of 0.05 

mg/kg/hr dexmedetomidine was initiated using a butterfly needle taped in place to 

maintain anesthetic depth for the duration of the experiment (Weber, Ramos-Cabrer et al. 

2006). Approximately eighty minutes following the initial dexmedetomidine bolus, the 

infusion dosage was increased to 0.15 mg/kg/hr (3× initial infusion rate) for maintaining 

anesthetic depth (Pawela, Biswal et al. 2009). The beginning of the 3x infusion did not 

exactly match Pawela’s protocol. In experiments where surgery was performed, it was 

necessary to ensure anesthetic depth, and we found that increasing the dexmedetomidine 

dosage at ~80 minutes was conducive to adequate sedation with no alteration functional 

activity (Weber, Ramos-Cabrer et al. 2006). 

Image Acquisition 

All resting state functional images were acquired on a 20 cm horizontal bore 9.4 T 

Bruker BioSpec magnet equipped with an actively shielded gradient coil capable of 

producing 20 G/cm gradient strength with a rise time of 120 µs. The BioSpec was 

interfaced with an AVANCE (Bruker, Billerica, MA) console. An actively decoupled 
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imaging setup was used including a 2cm surface coil for reception and a 7cm volume coil 

for RF transmission (Bruker, Billerica,MA).  

A FLASH (fast low-angle shot) image was acquired in three planes, providing 

necessary anatomical information to properly position the single slice to be used for 

resting state imaging. Using the flash image a coronal slice was selected covering the 

primary somatosensory (SI) cortex, based on known anatomical markers. Shimming was 

conducted on this single slice to obtain maximum SNR and spatial homogeneity. 45 

minutes after the initial dexmedetomidine bolus, the first resting state scan was collected 

with the following parameters: Single-shot gradient echo EPI, Repetitions = 1000, TR = 

500ms, TE = 15ms, total scan time = 8 minutes 20 seconds, number of slices = 1, slice 

thickness = 2mm, FOV = 2.56cm × 2.56cm, matrix size = 64 × 64. Every thirty minutes 

this identical resting state scan was repeated until the 5.75 hour mark was reached. This 

paradigm constituted eleven total scans; all scans were collected in 8 of 11 rodents. One 

rodent was missing the initial time point and one rodent was missing two of the initial 

time points due to delays during setup. Also one rodent was missing the final scan and 

another rodent was missing the final three scans; they were removed from the scanner 

because of slight motion (indicating the rat may be coming out of sedation). Following 

the final scan, rodents were removed from the MRI scanner. 

Data Analysis 

Functional activity and spectral metrics were directly compared between the short 

and long isoflurane experimental groups. Functional metrics were also compared between 

early and late portions of the experiment within each group. All fMRI data processing 

and analysis was performed using code written in MATLAB (MathWorks, Natick, MA). 
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Two initial preprocessing steps were performed before data evaluation. First the mean 

value was subtracted from functional time courses followed by division by one standard 

deviation to normalize for comparison between rats (Majeed, Magnuson et al. 2009). 

Following normalization, whole brain signal regression was performed (Liu, Zhu et al. 

2012). 

Spectral Analysis 

Following the initial preprocessing, spectral data was evaluated. A nine voxel 

(3x3 square) ROI from the single coronal slice imaged was chosen manually in the 

forepaw region of the primary somatosensory cortex (S1FL), and a functional time course 

was obtained for the average intensity in the ROI for the duration of the scan. Power 

spectra were obtained for the resulting functional time course, using the Welch method 

(200 second sections, 99.5% overlap, Hamming window). The resulting power spectra 

were averaged at each time point to create a spectrum for both experimental groups, 

highlighting frequencies where consistent high power is present, while reducing noise 

from non-relevant frequency components. Maximum power value (%/cHz), maximum 

power frequency location (Hz), and the center of mass for power (Hz) were calculated 

using spectral data between 0.05 and 0.3 Hz (chosen based on analysis of low frequency 

BOLD power localization from previous works) (Majeed, Magnuson et al. 2009; 

Magnuson, Majeed et al. 2010; Majeed, Magnuson et al. 2011). Data were divided into 

low-band power (0.05 – 0.149 Hz), high-band power (0.015 – 0.30 Hz), and broadband 

power (0.05 – 0.3Hz). For the purposes of this manuscript, when describing spectral 

ranges, the designations “low-band,” “high-band,” and “broad-band” power will be used. 

Spectral data < 0.05 Hz was not used for raw spectral analysis due to the presence of high 
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powered 0-0.05Hz components in some of the data sets that were not removed by 

detrending or global signal regression. Each set of values was plotted against 

dexmedetomidine sedation time to determine time sensitive systematic influences of the 

anesthesias.  

Functional Connectivity Analysis 

Functional connectivity and spatiotemporal dynamics were evaluated for each 

data set. Additional preprocessing was required before analysis; data was linearly de-

trended followed by finite impulse response (FIR) band pass filtering between 0.01 Hz – 

0.3 Hz (allowing for removal of DC artifacts and higher frequency components). The 

ROI selected for spectral analysis was used to obtain a time course of the filtered and 

detrended SI data. The functional time course of the left S1FL was then correlated with 

all other voxels in the image to obtain a functional connectivity map. The correlation 

values (r) from the 15 most highly correlated voxels in the hemisphere contralateral to the 

seed (clustered in SI) time course were averaged to generate a functional connectivity 

value for every rat and every scan. Correlation values were plotted against 

dexmedetomidine sedation times. Total low-band spectral power was plotted vs. 

broadband functional connectivity to determine if a relationship exists between the two. 

All data points for each experimental group were plotted on a scatter plot, and R
2
 (linear 

regression), r (Pearson correlation), and p values (Unpaired, two-tailed, equal variance t-

tests; multiple comparisons corrected) were calculated for each group. 

Global signal connectivity was evaluated (using preprocessed data without global 

signal regression) by performing Pearson correlation between the average functional 

timecourse from all voxels in the brain and each individual voxel. Mean correlation was 
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calculated representing global similarities in functional timecourses. Global signal 

connectivity was plotted versus time to determine if a relationship existed.  

Spatiotemporal Dynamic Analysis 

A pattern-finding algorithm designed to identify reproducible spatiotemporal 

dynamics was applied to the filtered data (Majeed, Magnuson et al. 2009; Majeed, 

Magnuson et al. 2011), allowing for the visualization of patterns of low frequency 

activity that propagate through cortical and subcortical brain regions. A chunk of 

consecutive images is chosen from the resting state data set at a random starting position; 

sliding correlation is then performed between the image chunk and the preprocessed 

image series, correlation peaks are detected from the sliding correlation data, image 

chunks corresponding to the correlation peaks are then averaged together to create a new 

template. This averaged template is once again used in sliding correlation analysis; this 

process continues until convergence is reached. The final template, containing 11 images 

in this case (5.5 seconds), is then displayed on an image strip or as a movie to allow for 

ideal viewing of spatiotemporal dynamic patterns. This algorithm is explained in detail 

by Majeed et al., 2011 (Majeed, Magnuson et al. 2009; Majeed, Magnuson et al. 2011).  

Templates for each scan were visualized on a blue to red color scale (colors 

indicate template strength, blue – low, red – high, “jet” in MATLAB); all templates were 

visually evaluated for the presence of spatiotemporal dynamics. Scans were grouped in a 

Boolean fashion as either showing or not showing the presence of spatiotemporal 

dynamics. 
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Inter- and intra- Group t-tests 

Two sets of statistical analyses were performed, intergroup and intragroup 

analysis. Unpaired, two-tailed, equal variance t-tests were performed between the two 

experimental groups at each time point for all metrics discussed above (except 

spatiotemporal dynamics). Unpaired, two-tailed, equal variance t-tests were also 

performed within each experimental group comparing data from the first half of the 

imaging series (0.75 – 3.25 hours) to data from the second half of the imaging series 

(3.75 – 5.75 hours) to evaluate evolving properties of each metric. This division of time 

points was chosen because of the emergence of the ~0.18 Hz peak at this time point; in 

addition it represents the half-way point of functional imaging.  

Multiple Regression Analysis: Resting State Metrics and Physiology 

Multivariate ANOVA analysis was performed to determine if quantified 

functional resting state metrics were significantly coupled with variation in physiological 

parameters. Heart rate was obtained in 9 out of 11 rats, oxygen measurements were 

collected in 10 out of 11 rats, and breath rate and temperature were collected for all 11 

rats. For each rat, spectral center of mass, max power, frequency location of max power, 

bilateral connectivity, and total low-frequency power (0.05 – 0.3 Hz) were independently 

evaluated vs. all physiological recordings (heart rate, breath rate, blood oxygen, and body 

temperature). Four P-values were obtained for each ANOVA indicating the statistical 

significance and interaction effects of the relationship between all physiological 

parameters and the evaluated functional resting state metrics (spectral center of mass, 

maximum spectral power, frequency location of maximum spectral power, maximum 

connectivity, and total spectral power between 0.05 and 0.3 Hz. Multiple regression 
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ANOVAs were performed for each rodent’s physiological parameters and each calculated 

RS metric (50 total ANOVAs). Twenty sets of P-values were obtained (five functional 

metrics * four physiological parameters).   

Physiological parameters were also evaluated individually to determine if there 

was a significant shift in physiological condition in the first half of scanning as compared 

to the second half of scanning. Student t-tests were performed comparing physiological 

data from the first half of the experiment (0.75 – 3.25 hours) to the same parameters from 

the second half of the experiment (3.75 – 5.75 hours).  

Correction for Multiple Comparisons 

The sequential goodness of fit (SGoF) method developed by Carvajal-Rodriguez, 

et al. (Carvajal-Rodriguez, de Una-Alvarez et al. 2009) was used to correct for multiple 

comparisons to minimize the chance that false positives would be considered significant. 

Seventy-seven hypotheses were tested regarding the relationship between our two 

experimental groups (seven functional metrics on eleven different time points). SGoF 

performs a binomial test based on a null hypothesis on the expected distribution of the P-

value family created from the 77 student t-tests performed. This allows for controlling 

type 1 errors (the false rejection of a true null hypothesis) and minimizes the chance of 

false-positives being presented. SGoF was also performed on a second family of 

hypotheses (intra-individual comparisons) where data from the first six time points for 

each rat are compared to the second five time points to test for significant differences. 

Eight comparisons are made for both experimental groups for a total of 16 comparisons. 

All values described as significant in the results section have passed SGoF multiple 

comparison correction. 
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Results 

Functional connectivity, spectral content, and spatiotemporal dynamics exhibit 

evolving properties occurring as the length of time from isoflurane use increases and the 

duration of dexmedetomidine exposure increases. A summary of all inter- and intra- 

subject statistical comparisons can be found in Table 3 and Table 4 respectively; all 

values highlighted in bold are significant and have passed SGoF multiple comparison 

correction (Table 3: p < 0.0319; Table 4: p < 0.0345).  

Spectral Characteristic Evolution 

Inter-group Analysis 

Figure 6 contains the group average of spectral components obtained from time 

courses extracted from the right S1FL at each recorded time point for both short and long 

isoflurane groups. Data collection began 0.75 hours following the initial 

dexmedetomidine bolus. Resting state scans occurred at 30 minutes intervals until the 

5.75 hour post-bolus data point is reached (11 plots represent 11 time points).  
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Table 3: Inter-group P-values of student t-tests were performed between the short and long isoflurane groups at each time point for each 

functional metric. The values highlighted in bold represent statistically significant differences between the groups that passed multiple 

comparisons testing (SGoF) which indicated significance at p < 0.0319. Significant differences between the groups were found in functional 

connectivity; maximum spectral power; low-band, high-band, and broad-band power; and global connectivity. Interestingly no significant 

differences were found after the 2.75 hour time point suggesting the influences of the long isoflurane duration prior to functional imaging had 

dissipated by the 3.25 hour time point. 

 

 

 

  

Time Point (hours) 0.75 1.25 1.75 2.25 2.75 3.25 3.75 4.25 4.75 5.25 5.75 

            Connectivity 0.019 0.283 0.245 0.746 0.976 0.874 0.992 0.685 0.250 0.110 0.178 

Spectral Center of Mass 0.035 0.113 0.490 0.353 0.682 0.132 0.666 0.383 0.365 0.370 0.420 

Max Power 0.045 0.008 0.0006 0.079 0.010 0.114 0.572 0.348 0.044 0.412 0.185 

Max Location 0.276 0.614 0.250 0.504 0.698 0.042 0.988 0.092 0.246 0.699 0.756 

Low-band Power  0.048 0.0002 0.004 0.078 0.002 0.771 0.691 0.474 0.359 0.319 0.617 

High-band Power 0.112 0.005 0.013 0.050 0.016 0.145 0.503 0.098 0.172 0.222 0.534 

Broadband Power  0.052 0.0001 0.0001 0.0138 0.002 0.149 0.414 0.035 0.123 0.151 0.310 

Global connectivity 0.032 0.041 0.029 0.051 0.066 0.159 0.066 0.66 0.114 0.141 0.840 
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Table 4: Intra-group P-values of student t-tests were performed between all functional metrics comparing the 0.75 – 3.25 hour time frame to the 

same metrics from the 3.75 – 5.75 hour time points. All values highlighted in bold represent statistically significant findings passing multiple 

comparisons correction (SGoF), p <0.0345. Long isoflurane data shows a significant evolution of functional metrics for 5/8 functional metrics 

while short isoflurane data indicates a significant evolution of functional metrics for 3/8 metrics.  

 

 
Connectivity 

CoM 

Location 

Max 

Power 

Max 

Location 

Low-band Power 

(0.05 – 0.149 Hz) 

High-band Power 

(0.15 – 0.3 Hz) 

Broadband Power 

(0.05 – 0.3 Hz) 

Global 

Connectivity 

 

Long ISO 0.0002 0.332 5.57 x10
-6

 0.034 5.84x10
-8

 2.8x10
-8

 2.23x10
-11

 0.749 

Short ISO 0.729 0.042 0.003 0.079 0.177 0.0008 5.81x10
-5

 0.229 
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At the 0.75 hour time point power is low across the entire spectrum; slightly 

higher power exists in the low frequency band (0.05 Hz – 0.149 Hz) for both 

experimental groups. At the second time point (1.25 hours) the short isoflurane group 

displays a major increase in low frequency power; low frequency power increases 

slightly in the long isoflurane group as well. This spectral organization continues in 

general through the 2.75 hour time point; while a gradual increase in the high-band 

frequencies (0.15 – 0.3) beginning to occur in both groups. At the 3.25 hour time point 

the power spectra of the two groups come close to convergence and evolve similarly 

throughout the final 5 time points. An interesting phenomenon begins to occur at 3.75 

hours when a strong peak begins to emerge at ~0.18 Hz in both short and long isoflurane 

groups. By the 5.25 hour time point the ~0.18 Hz peak dominates the spectra. This peak 

remains dominant throughout the remaining time points for both groups.  

Average power and squared error of the mean (SEM) for the low-band, high-

band, and broadband spectrums are plotted in Figure 7 for both experimental groups. A 

statistical analysis of the qualitative evaluation described in the previous paragraph (and 

shown in Figure 6) comparing the groups is presented in Figure 7. For low-band total 

power (Figure 7- top), statistical differences exist between the short and long isoflurane 

groups at 1.25 hours (p = 0.0003), 1.75 hours (p =0.0036), and 2.75 hours (p = 0.0022). 

Low-band spectral power values become more similar at 3.25 hours and finally converge 

at 3.75 hours. A similar trend is seen in the high-band power (Figure 7 center); however, 

average power values for the first time point (0.75 hours) are more similar than in the low 

band; following the first time point there is an ‘unzipping’ of high-band power data 

values until the 3.25 hour time point where the values ‘re-zip’. Statistically significant 
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differences were found for the same time points, 1.25 hours (p = 0.0049), 1.75 hours (p = 

0.0129), and 2.75 hours (p = 0.0164), as seen in the low band power. Broadband power 

(Figure 7, bottom) reflects a combination of low-band and high-band values; naturally a 

similar trend is seen as in the previous two cases, although statistical differences between 

the short and long term isoflurane groups are also found at the 2.25 hour time point (p = 

0.0001) in addition to the 1.25 (p = 0.0001), 1.75 (p = 0.0138) and 2.75 (p = 0.0017) hour 

time points. Qualitatively, the short isoflurane group appears to have greater power 

throughout all time points in the high-band and broadband ranges as compared to the long 

isoflurane group; however, SEM increases as the mean power increases and diminishes 

the statistical significance of differences between the two groups.  
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Figure 6: Power spectra evolution. Plots of average power spectra from the short isoflurane (30 minutes) group (4 rats – dotted line) and long 

isoflurane (3 hours) group (7 rats – solid line) followed by resting state imaging in 30 minute intervals under a fixed dosage of dexmedetomidine 

for 5.75 hours. Power spectra are derived from a time course generated from the left primary somatosensory cortex. Low-band power (0.05 – 

0.149 Hz; light grey) increases at the 1.25 hour time point in the short isoflurane group and does not increase in the long isoflurane to a similar 

level until the 3.25 hour time point when near convergence of the two group’s spectral signal occurs. At the 3.25 hour time point a strong ~0.18 Hz 

peak arises in both group within the high-band data (0.15 – 0.3 Hz) and dominates the power spectra for the remainder of the functional scans. 

Both groups indicate a clear evolution of spectral information as time under dexmedetomidine (and time since isoflurane cessation) increases.  
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Figure 7: Average power evolution. Summation of low-band power (left, 0.05-0.149Hz), high-

band power (middle, 0.15-0.3Hz), and broadband power (right, 0.05-0.3Hz) for both the short 

(dotted line) and long (solid line) isoflurane groups. Mean and SEM values for each group are 

plotted for each time point. Significant differences are found between the short and long 

isoflurane groups in the low-band power at the 1.25, 1.75, and 2.25 hour data points; in the high-

band power at the 1.25, 1.75 and 2.25 hour data points; and in the broadband power at the 1.25, 

1.75, 2.25 and 2.75 hour data points. Intra-group evaluations highlighting changes between early 

data and late data are calculated and presented in Table 4.  
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Peak power, peak location, center of spectral mass (CoM), and bilateral primary 

somatosensory (SI) functional connectivity are plotted in Figure 8 for both experimental 

groups. No statistically significant differences were found between the short and long 

isoflurane groups for center of mass calculations (Figure 8, top left) or the frequency 

location of the maximum spectral power (Figure 8, bottom right). Maximal power 

occurring in the broadband spectrum (Figure 8, bottom left) is significantly different 

between the short and long isoflurane groups at 1.25 (p = 0.0078), 1.75 (p = 0.0006), and 

2.75 (p = 0.0103) hours. While mean maximum power appears greater in the short 

isoflurane group than the long isoflurane for most time points, SEM increases 

substantially as mean maximum spectral power increases resulting in overlap between the 

groups.  

Intra-group Analysis 

Functional metrics were also evaluated on an intra-group basis evaluating their 

evolution occurring as a result of both time since isoflurane discontinuation as well as 

total duration under dexmedetomidine. Early time points (0.75 – 3.25 hours) were 

compared to late time points (3.75 – 5.75 hours) for each functional metric. Qualitatively 

the short isoflurane group’s low-band power shows a slight trend towards increasing 

power over the 5 hour recording duration; however, comparing early data to late data 

does not reveal a significant difference. The long isoflurane group has a more dramatic 

increase in low frequency power as a function of scanning time; a significant difference 

between early and late time points in long isoflurane low-band power is calculated (p = 

5.84e-8). 
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Figure 8: Spectral characteristic and connectivity evolution. Average group values and SEM are 

plotted for center of spectral mass (top left), bilateral primary somatosensory connectivity (top 

right), maximum spectral power (bottom left), and the location of that maximum power (bottom 

right) for both the short and long isoflurane groups. No significant differences are found between 

the two groups for spectral center of mass or for location of the max spectral power. Bilateral 

functional connectivity exhibits a significant difference between the groups at 0.75 hour time 

point followed by a convergence in connectivity data at the 2.25 hour time point. Significant 

differences between maximum spectral powers are found at the 1.25, 1.75 and 2.75 hour time 

points. Intra-group evaluations highlighting changes between early data and late data are 

calculated and presented in Table 4.  

 

Short and long isoflurane high-band power display a strong increase as time under 

dexmedetomidine anesthesia increases with statistically significant differences in early 

and late data in both experimental groups (short, p = 0.0008; long, p = 2.8x10
-8

). Much of 

this increasing power in the high-band data is a result of the appearance of a high 

powered ~0.18 Hz peak in both groups occurring around the 3.75 hour time point (see 

Figure 6). Similarly in the broadband power, data for both short and long isoflurane 
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groups display a pattern of increasing power over the duration of the scanning session 

with both groups having highly significant differences between early and late data (short, 

p = 2.23 x10
-11

; long, p = 5.81x10
-5

).  

Intra-group analysis of center of spectral mass data reveals minor shifts over the 

duration of the experiment in both experimental groups (Figure 8; top left), but neither 

shift was significant after multiple comparisons correction. The maximum value of 

broadband spectral power increased significantly in both the short and long isoflurane 

groups over the experiment’s duration; both experimental groups confirmed a statistically 

significant shift in data from the first half of the experiment to the second (short, p = 

5.57x10
-6

 ; long, p = 0.0035). Finally, the specific frequency location of the maximum 

spectral power also has a general trend of shifting towards the higher frequencies as the 

time under dexmedetomidine increases in both experimental groups. Only the long 

isoflurane data exhibited a statistically significant shift in location of the maximum 

spectral power (p = 0.035).  

Seed Based Functional Connectivity 

Inter-group Analysis 

Bilateral connectivity of the primary somatosensory cortex was evaluated for all 

rats and scans. There was a significant difference in functional connectivity (Figure 8, top 

right) between the short and long term isoflurane groups at only the 0.75 hour time point 

(p = 0.0187). While no other time points show a significant difference in connectivity, 

convergence of mean connectivity values does not occur until the 2.25 hour time point.  
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A visual example of functional connectivity over time is shown in Figure 9 (top). 

The resulting maps represent the correlation between a timecourse derived from the left 

primary somatosensory cortex and all other voxels within this coronal brain slice.  In this 

example depicted in Figure 9 (long isoflurane – rat 7) functional connectivity generally 

increases as dexmedetomidine sedation times increases. 

Connectivity between the average signal from the whole brain and each voxel in 

the brain was also evaluated for each rat and scan to determine anesthetic influences on 

whole brain connectivity. Mean global connectivity was generally stronger for all data 

points from the short isoflurane data as compared to the long isoflurane data; however, 

significant differences were only confirmed at the 0.75 (p = 0.0319) and 1.75 (p = 

0.0292) hour time points.  
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Figure 9: Functional connectivity spatial extent evolution. Top: Correlation maps representing 

functional connectivity between left SI and the rest of the coronal brain slice (coronal slice 

contains primary and secondary somatosensory cortices, the caudate putamen complex, and the 

primary motor cortices) as a function of time. The rat pictured is rat 7 from the long isoflurane 

group (chosen for display due to its similarity with the group correlation analysis). The strong 

correlation values in the left superior region represent autocorrelation with the seed time course. 

High correlation values in the bilaterally symmetric region on the right side of the brain represent 

bilateral functional connectivity.  As total time under dexmedetomidine increases functional 

connectivity becomes more prominent, until it reaches a semi-stable state around 3.75 hours. 

Very little connectivity is evident before 2.75 hours. Similar trends are apparent in the group 

analysis of long isoflurane data as seen in the data in Figure 8. Bottom left: Single slice EPI 

image corresponding to functional connectivity maps above.  Bottom right: Global signal 

connectivity is plotted as function of time for both long and short isoflurane data with no global 

signal regression. Significant differences in global signal connectivity between the two groups are 

found at the 0.75 and 1.75 hour time points.  
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Intra-group Analysis 

Short isoflurane connectivity shifts throughout the duration of experiment but not 

in a monotonic fashion; SEM of recorded connectivity values increases significantly in 

the last 2 hours of data collection. There is no significant evolution of short isoflurane 

functional data over the duration of the experiment. Long isoflurane connectivity 

increased consistently and significantly throughout the experimental duration (p = 

0.0002).  

Functional Connectivity’s Relationship to Low-band Power 

Total low-band spectral power (0.05 – 0.149 Hz) is plotted vs. bilateral functional 

connectivity for both experimental groups in Figure 10.  Linear regression of the short 

isoflurane data did not reveal linearity or significance. Long isoflurane data did indicate a 

linearly significant relationship between low band power and connectivity (R
2
 = 0.2635, 

p = 3.42x10
-6

). A relationship between high-band power and functional connectivity was 

not significant in either experimental group. The relationship between broadband power 

and functional connectivity is significant in the long isoflurane data (p = 0.0345), but not 

in the short isoflurane data. A summary of these results can be found in Table 5. 
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Table 5: R
2
, p-values, and Pearson correlation values were calculated indicating the relationship 

between total spectral power and functional connectivity. Significant linear relationships exist 

between long isoflurane data and functional connectivity in the low-band and broadband power 

spectra. No significant linear relationships exist between spectral power and functional 

connectivity in the short isoflurane data. 

  

low-band  
(0.05- 0.149 Hz) 

high-band 
(0.15 – 0.3 Hz) 

broadband 
(0.05 – 0.3 Hz) 

Short Isoflurane R2 0.0002 0.0059 0.0049 

 
p 0.9335 0.6339 0.6646 

 
r 0.0134 -0.0766 -0.0698 

     Long Isoflurane R2 0.2635 0.0066 0.0614 

 
p 3.42x10-6 0.4948 0.0345 

 
r 0.513296 0.08118 0.247817 

 

 

 

 

Figure 10: Summation of low-band power is plotted against bilateral functional connectivity for 

the short (left) and long (right) isoflurane groups.  There is no significant relationship found 

between short isoflurane and functional connectivity; however, a significant linear relationship 

was found between the summation of low-band power and functional connectivity in the long 

isoflurane data.  
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Spatiotemporal Dynamics 

The template resulting from spatiotemporal dynamic analysis manifests in one of 

two forms: largely spatially un-localized high and low correlations spread sporadically 

throughout the brain (Figure 11; top row – no coordinated spatiotemporal dynamics) or 

propagating waves of activity moving from the lateral cortex (SII) towards the medial 

cortex (MI) (Figure 11; bottom row – coordinated cortical spatiotemporal dynamics). The 

latter dynamic pattern matches the previously reported spatiotemporal pattern in the rat 

cortex (Majeed, Magnuson et al. 2009; Majeed, Magnuson et al. 2011).  

A second output of spatiotemporal dynamic analysis is a plot of mean spatial 

correlation vs. the defined template. This correlation incidence analysis reveals patterns 

of activity which are spatially reproducible throughout the duration of the scan. Once this 

coordinated template is observed, it remains present throughout all subsequent scans in 

the study. Figure 11 shows a 4.5 second template generated from two scans occurring 

before the presence of strong spatiotemporal dynamics (top) and two scans occurring 

after the coordinated, reproducible spatiotemporal dynamics are present (bottom) in one 

rat (long isoflurane, rat 5). There is an obvious qualitative shift between the two states. 

Based on visualization, spatiotemporal dynamics are grouped as either being detectable 

or not detectable. The percentage of scans displaying coordinated cortical spatiotemporal 

dynamics is plotted for each time point and shown in Figure 12. Of note is that 50% of 

rats contain coordinated spatiotemporal dynamics by the 1.75 hour time point in the short 

isoflurane group while the 50% marker is not reached in the long isoflurane rats until the 

3.25 hour time point.  
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Figure 11: Spatiotemporal dynamic evolution. Each of the four windows contains data from a single coronal brain slice containing the primary 

motor and primary somatosensory cortical brain regions. Spatiotemporal dynamic templates were generated from four time points of a single rat 

(2.25 hours, 3.25 hours, 4.25 hours, and 5.25 hours). These templates indicate repeating patterns of hemodynamic activity occurring in space and 

time. Detailed information regarding the formation of spatiotemporal dynamic templates can be found in Majeed et al. (Majeed, Magnuson et al. 

2009). The top row indicates the state where no visible dynamics are present, while the bottom row shows the presence of coordinated cortical 

spatiotemporal dynamics. For this rat (long isoflurane, rat 5; chosen for display because of its similar timing to spatiotemporal group analysis for 

spatiotemporal dynamic data), spatiotemporal dynamics began at 3.75 hours. High correlation values located on the edge of the brain at the 2.25 

and 3.25 hour time points are likely due to slight motion or breathing effects and are present in the template as they represent the only quantified 

pattern in that time point data by the spatiotemporal dynamic algorithm. 
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Figure 12: Percent of rodents with coordinated cortical spatiotemporal dynamics present for each 

time point recorded. Dynamics were grouped into the present and not present categories based on 

visual inspection of the dynamic template generated for each scan. Spatiotemporal dynamics are 

present in 50% of rats at the 1.75 hour time point in the short isoflurane group and 50% of rats in 

the long isoflurane group at the 3.25 hour time point. 

 

Physiological Parameters 

Heart rate, breathing rate, oxygen saturation, and body temperature over the 

duration of anesthesia were plotted in Figure 13. Physiological parameters all fell into 

acceptable ranges: Heart rate – 299 ± 2.57 beats / min; breathing rate – 79.8 ± 1.6 breaths 

/ minute; oxygen saturation - 98.4 ± 0.08 %; body temperature - 37.2 ± 0.04 °C.  
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Figure 13: Physiological parameters are plotted as a function of total time under 

dexmedetomidine. Short isoflurane data is indicated by a black line while long isoflurane data is 

represented by a solid line. Significance was tested comparing data from the 0.75 – 3.25 hour 

time frame to data from the 3.75 – 5.75 hour time frame for the average of both experimental 

groups. There were significant differences in the group data for heart rate (p = 0.028) and 

oxygenation (p = 0.0008). While there are some slight modulations in the physiological data, all 

recorded values fell into physiologically acceptable ranges. The y-scale represents generally 

accepted physiological ranges for Sprague-Dawley rats under this anesthetic protocol. There were 

no significant differences calculated between the physiological metrics in the two groups. 

 

There were no sudden variations in physiological parameters throughout the 

duration of anesthesia use, but there were sustained drifts in physiological parameters for 

all four metrics. Dividing physiological data into the 0.75 – 3.25 hour range and the 3.75 

– 5.75 hour range, heart rate and oxygenation indicated a significant change in their 

physiological parameters over anesthetic duration (P-values shown in Figure 13). There 

was no significant change for breathing rate. Despite significant changes as a result of 
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anesthetic duration, all physiological parameters were maintained in expected and 

acceptable ranges for the entire length of the functional studies.  

Multivariate ANOVA Analysis: Resting State Metrics and Physiology 

55 (eleven rats x five functional metrics) multivariate ANOVA regression 

analyses were performed between four physiological metrics (heart rate, breath rate, 

oxygenation, and temperature) and five functional metrics (center or mass, maximum 

power, max location, functional connectivity, and band power) for all rats. 205 P-values 

(55 ANOVAs x 4 physiological parameters minus rats where specific physiology was not 

collected, see ANOVA section of methods) were obtained; and multiple comparisons 

correction was performed on the results. Three significant p-values were calculated 

indicating there is a statistically relevant relationship between that physiological 

parameter and the measured resting state metric. Heart rate is coupled with center of mass 

measurement in one out of eleven rats; temperature levels are significantly coupled with 

center of mass in one out of eleven rats and total bandpower in one out of eleven rats. No 

significant results were obtained for maximum power, location of that power peak, or for 

functional connectivity values relating to any recorded physiology based on the ANOVA 

analysis. 

 

Discussion and Conclusion 

To determine the effects of an anesthesia regimen consisting of isoflurane and 

prolonged dexmedetomidine use we evaluate spectral components of functional BOLD 

activity, seed based functional connectivity, and the presence of spatiotemporal dynamics 
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over a five hour period of resting state fMRI scanning (0.75 – 5.75 hours post 

dexmedetomidine bolus). Two experimental groups were used to compare and contrast 

the effects of increased periods of isoflurane use prior to functional imaging and possible 

effects of extended durations of dexmedetomidine use. The first experimental group was 

anesthetized using a short period of isoflurane, 30 minutes, followed by 5.75 hours of 

dexmedetomidine anesthesia. The second experimental group’s anesthesia regimen began 

with a long period under isoflurane to mimic surgical preparation, 3 hours, followed by 

the standard dexmedetomidine dosing for 5.75 hours. There were several significant 

differences between functional metrics in our two experimental groups within the first 

2.75 hours of scanning; following that time point, no significant differences were found 

between the two groups. Both groups exhibited an evolution of the analyzed functional 

metrics as time under dexmedetomidine anesthesia (and time since use of isoflurane) 

increased. This process was more dramatic in the long isoflurane group as compared to 

the short isoflurane group.  

Recent studies have examined the differential effects of isoflurane and 

dexmedetomidine on resting state functional connectivity (Hutchison, Mirsattari et al. 

2010; Liu, Zhu et al. 2012; Kalthoff, Po et al. 2013). Kaltoff et al. focus on each 

anesthetic state separately, functional imagine is performed either under 1.5% isoflurane 

or standard dexmedetomidine (Kalthoff, Po et al. 2013). They reveal the marked decrease 

in functional connectivity and reliable generation of functional networks when isoflurane 

is used as compared to medetomidine. Liu et al. identify effects of variable doses of 

isoflurane of functional activity and discovered that under low levels of isoflurane 

functional networks remain intact; however, as isoflurane levels are increased, spatial 
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specificity of functional networks is greatly reduced (Liu, Zhu et al. 2011). In the current 

work we contribute an important missing link combining independent anesthetic 

approaches by performing two “typical” isoflurane/dexmedetomidine anesthetic 

protocols and evaluating the evolution of the BOLD fluctuations over time. 

  The primary findings of this study suggest increased durations of isoflurane use 

prior to functional imaging using dexmedetomidine anesthesia result in pronounced 

lingering effects of isoflurane that do not allow normal functional activity for multiple 

hours. Functional metrics analyzed from the long isoflurane data do not match those of 

the short isoflurane data until ~3.25 hours following the cessation of isoflurane. Short 

isoflurane usage prior to functional imaging exhibits early signs of functional activity 

depression, but they diminish quickly allowing for robust functional activity and 

connectivity as early at 1.25 hours following the cessation of isoflurane. Once the effects 

of isoflurane diminish there is a secondary effect presumably arising from the use of 

dexmedetomidine anesthesia that manifests as evolving functional metrics as time under 

dexmedetomidine increases. Experimenters using isoflurane/dexmedetomidine anesthetic 

regiment for functional imaging paradigms should consider isoflurane sedation length 

prior to functional imaging when evaluating data. They should also be aware of evolving 

states of functional activity, specifically the increase of high-band power and the 

appearance of strong ~0.18 Hz spectral peak that occur under the currently accepted 

method for dexmedetomidine sedation (Weber, Ramos-Cabrer et al. 2006). These 

findings are particularly relevant since most researchers use low-pass cutoffs of 0.08 or 

0.1 Hz, based on early findings in human functional connectivity. These low frequencies 

do not appear to encompass the full range of the BOLD fluctuations in the anesthetized 
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rat, and due to the temporal evolution of the signal, functional connectivity measured at 

later times in the scan may appear artificially low as most of the BOLD power is above 

the standard cutoff frequencies. 

Parsing the effects of isoflurane from the effects of extended use of 

dexmedetomidine is a difficult task considering overlapping variables in our experimental 

groups and the known lingering effects and interactions of both anesthesias; however, we 

can reasonably assume there are effects of each from our experimental results. Short 

isoflurane data has consistent low-band power throughout the duration of the experiment 

while long isoflurane data begins low and does not reach the power level of short 

isoflurane data until the 3.25 hour time point. Similarly functional connectivity in the 

short isoflurane data is relatively consistent throughout the duration of the experiment 

(although there is decreased mean and increased variation in the final hour of 

experimentation) while long isoflurane functional connectivity begins low and converges 

with the long isoflurane data around the 2.25 hour time point. Evaluating the presence of 

highly coordinated patterns of spatiotemporal activity in each group reveals 

spatiotemporal dynamics are present, on average, 1.5 hours sooner in the short isoflurane 

data than the long isoflurane data. A final piece of the puzzle untangling the effects of 

isoflurane from dexmedetomidine lies in the relationship between low-band power and 

functional connectivity which indicates there is no relationship in the short isoflurane 

data but a linear relationship in the long isoflurane data. The linear relationship between 

connectivity and total power in the long isoflurane data suggests a depressed functional 

state in the early portion of the experiment, manifesting as reduced low-band spectral 

power and functional connectivity that “returns to normal” as time post isoflurane use 
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progresses and functional metrics converge with the short isoflurane data at ~2.75 hours. 

This relationship is not found in the short isoflurane data suggesting that functional 

connectivity is minimally disrupted by the use of isoflurane prior to imaging.  Each of 

these occurrences suggests short and long isoflurane data display differing functional 

activities which we can only be attributed to the difference in isoflurane anesthetic 

duration.   

The second portion of the story involving parsing the isoflurane effects for 

dexmedetomidine effects lies in the similarities between the two groups. Both groups 

show a time locked evolution of high-band and broadband spectral power. Similarly both 

groups show the presence of a strong ~0.18 Hz peak appearing at the 3.75 hour time point 

following the cessation of isoflurane. Based on the known differential effects of 

isoflurane on the functional parameters we infer that this time locked functional evolution 

may be attributed to the effects of the dexmedetomidine either on the vascular capacity or 

the neural activity.  

We have gained two primary insights regarding the combined use of 

dexmedetomidine and isoflurane: 1.) there are significant repercussions of increased 

durations of isoflurane use prior to dexmedetomidine on functional activity and 2.) as the 

effects of isoflurane subside, there are secondary functional activity effects that 

seemingly can only be attributed to long term dexmedetomidine use. 

There was a significant difference in recorded physiological metrics between the 

pre- and post- 3.75 hour time points (corresponding to both the halfway point of the 

experiment and emergence of the ~0.18 Hz peak) for heart rate and oxygenation; 
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however, all measurements fell into normal physiological ranges (see physiological 

parameters section of results) throughout the experiment. While the variance of most 

physiological parameters was relatively consistent over the duration of the resting state 

scans, oxygenation exhibited a sudden decrease of mean signal and increased variance for 

the final 3 data points for both experimental groups. Interestingly most of the functional 

metrics recorded exhibited their greatest variance in the final three data points. Blood 

oxygenation is a primary influencer of the BOLD signal, and it is possible that the 

increased variance of the oxygenation was directly related to increased variance in the 

functional metrics. There were no significant physiological differences between the short 

and long isoflurane groups for any of the recorded time points.  

Multiple regression ANOVA analysis was performed to evaluate the relationship 

between physiology and functional activity and revealed that body temperature shows a 

significant relationship with spectral center of mass as well as total bandpower 

calculations in one out of eleven rats. Heart rate is significantly related to the center of 

mass metric in one out of eleven rats. Physiological parameters show no significant 

correlation with the maximum spectral power, frequency location of that peak, or 

functional connectivity. It is not surprising that heart rate may have an influence on 

center of mass calculations. Based on our 2 Hz sampling rate, aliasing of the cardiac 

signal into the 0.01 – 0.3 Hz spectral range will occur during low heart rates (~260 bpm) 

and higher heart rates (~340 bpm). In these cases, heart rate has a subtle but significant 

impact on the center of mass of low frequency spectral power as a result of signal 

aliasing.  It is important to note that both experimental groups were subject to similar 
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physiological evolutions, thus the differences between the two groups remain intact 

despite possible physiological influences.  

Volatile anesthetics (e.g. isoflurane and halothane) are conventionally used for 

initial anesthetization before dexmedetomidine administration. The behavioral effects of 

volatile anesthetics typically wear off quickly when administration is discontinued; 

however, these agents are also potent vasodilators and the effects on the vasculature may 

persist after behavior has returned to baseline (Ohata, Iida et al. 1999).  

Dexmedetomidine is a vasoconstrictor and may inhibit the cerebrovascular dilation 

induced by isoflurane. The inverse effects on vascular walls due to the change in 

anesthetics may cause unstable responses in neurovascular coupling during a certain 

period after the anesthetic switch (Nasrallah, Tan et al. 2012). It is likely that the 

evolution of the ~0.18 Hz BOLD peak is related to modulations in vascular tone.  In 2010 

our lab reported a study comparing functional connectivity measured with BOLD and 

cerebral blood volume (CBV) contrast (Magnuson, Majeed et al. 2010); these results are 

discussed in Chapter 2 of this thesis. Interestingly a ~0.2 Hz peak presents dominantly in 

the low frequency spectrum for the CBV-weighted images, well before the 3.75 hour 

critical time point discussed in this paper for the BOLD signal peak emergence. BOLD is 

a composite measure of CBF, CBV, and CMRO2, while an independent measure of CBV 

is almost entirely vascular. We infer from previous work that the CBV component of 

BOLD is largely associated with the ~0.18 Hz peak (Magnuson, Majeed et al. 2010). 

Because of the timing of the emergence of this peak, 3.75 hours following isoflurane use 

and the beginning of dexmedetomidine use, we assume dexmedetomidine is the primary 
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culprit as opposed to isoflurane whose dosing is variable between groups and appears to 

wear off by the ~3.25 hour time point.  

While we have grouped the presence of spatiotemporal dynamics in a Boolean 

fashion, quantitative analysis of the templates (unpublished work) suggest that there is a 

period of time where the dynamics are in an in-between state; the dynamics are beginning 

to occur, yet we cannot clearly visually detect them. For the purpose of this paper, visual 

determination of an on or off current dynamic state is adequate for evaluating normal and 

depressed functional sates.   

Ideally anesthetized rodents should be in a condition as close to the “normal 

functioning” awake state as possible; however, defining normal activity is not an easy 

task. In this work we have discovered that lingering effects of isoflurane have a 

significant effect on functional activity and persist after cessation of isoflurane at a length 

corresponding to the initial isoflurane anesthetic length. Similarly we have uncovered an 

interesting phenomenon of a strong ~0.18Hz peak which dominates the low frequency 

spectrum beginning 3.75 hours into the scanning period that should be explored in more 

depth.   

This work focuses on the anesthetic protocols presented by Pawela and Weber, 

specifically the influences of the length of time under isoflurane prior to the switch to 

dexmedetomidine (Weber, Ramos-Cabrer et al. 2006; Pawela, Biswal et al. 2009). 

Secondly our results show an evolution of functional activity independent of the 

isoflurane use and are likely a result of prolonged dexmedetomidine usage. Potentially 

confounding factors could be addressed with pharmacological intervention, change in 



www.manaraa.com

88 
 

dexmedetomidine dosage, or using an anesthesia other than isoflurane for induction; 

however, that is the topic of further work. Researchers using isoflurane induction 

followed by dexmedetomidine in the rat model should utilize caution in interpreting 

functional data acquired in the first hour after isoflurane is discontinued when using short 

isoflurane lengths (< 30 minutes) and as long as 3.25 hours when using longer durations 

(3 hours) of isoflurane prior to the switch to dexmedetomidine. When making 

comparisons between subjects, it is imperative that data has experienced similar 

anesthetic paradigms at the time of functional recording.   
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CHAPTER 4 

EFFECTS OF COMPLETE SEVERING OF THE CORPUS 

CALLOSUM ON COHERENT ELECTRICAL AND 

HEMODYNAMIC INTERHEMISPHERIC FUNCTIONAL BRAIN 

NETWORKS IN THE RODENT MODEL 

 

Why the Split-brain Model for Probing Functional Brain Networks? 

Coordinated spontaneous oscillations in functional networks have been well 

characterized and confirmed across modalities and models including EEG (Mantini, 

Perrucci et al. 2007; He, Snyder et al. 2008; Hlinka, Alexakis et al. 2010), fMRI (Biswal, 

Yetkin et al. 1995; Keilholz, Silva et al. 2006; Vincent, Patel et al. 2007; Fox, Zhang et 

al. 2009; Chang and Glover 2010; Magnuson, Majeed et al. 2010), MEG (de Pasquale, 

Della Penna et al. 2010; Liu, Fukunaga et al. 2010; Brookes, Hale et al. 2011), voltage 

sensitive dye (VSD) (Carlson and Coulter 2008; Mohajerani, McVea et al. 2010) and 

multimodal approaches (Nir, Fisch et al. 2007; Srinivasan, Winter et al. 2007; Xu, Olivas 

et al. 2010 Shmuel, 2008 #156; Pan, Thompson et al. 2011). These functional networks 

are thought to reflect coordinated neural activity between spatially distinct cooperating 

brain areas that facilitate efficient processing (Fox, Snyder et al. 2005) specifically on 

complex tasks requiring bilateralization (van der Knaap and van der Ham 2011). 

Functional networks in monkeys and humans examined with fMRI are primarily 

localized to the ultra-low (< 0.1 Hz) frequency range (Biswal, Yetkin et al. 1995; Cordes, 

Haughton et al. 2000; Hampson, Peterson et al. 2002; Fox, Zhang et al. 2009; Majeed, 
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Magnuson et al. 2009), while neural and MEG functional network correlates are found 

throughout the 0 – 100 Hz range (He, Snyder et al. 2008). The relationship between 

coordinated blood oxygen level dependent (BOLD) activity and the correlated electrical 

activity seems largely dependent on the network being examined (Mantini, Perrucci et al. 

2007). Pan et al.’s simultaneous fMRI-electrophysiological work reveals a direct 

correlation between low frequency BOLD oscillations and the power envelope of 

broadband neural activity in the same frequencies (0.01 – 0.25 Hz) (Pan 2013). While we 

have a firm understanding of the “whats” as it relates to classifying functional networks, 

we must focus on the “hows” and “whys” with the purpose of providing order to the 

complexities of the working brain. Elucidating mechanisms by which functional 

networks operate is a vital step towards this goal. 

Functional networks commonly contain bilaterally symmetric anatomical 

components suggesting the possible role of callosal pathways in mediating functional 

networks. Callosotomies were performed before 1940 to treat patients with intractable 

epilepsy (Van Wagenen 1940); the results indicated that the procedure seemed to reduce 

epileptic seizures in many cases. Behavioral implications of the split brain model have 

since been evaluated in models including cats (Myers 1956; Myers and Sperry 1958), 

monkeys (Gazzaniga 1966), and humans (Brazdil, Brichta et al. 1997; Johnston, 

Vaishnavi et al. 2008) revealing the importance of the corpus callosum for bi-

hemispheric exchange of motor, sensory, gnostic, and perceptual information (Paul, 

Brown et al. 2007). Generalizing the current body of work reveals that for simple tasks 

the split brain is capable of performing normally; however, as the complexity of the task 

increases, requiring recruitment of both hemispheres, performance is severely impacted 
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(Banich and Belger 1990; Belger and Banich 1998; Brown, Jeeves et al. 1999; Weissman 

2000). The corpus callosum’s role in providing a route of communication between the 

hemispheres is apparent from these works.  

The corpus callosum is a dense collection of myelinated and unmyelintated axons, 

1.9e8 in humans (Tomasch 1954) and 1.2e7 in rats (Gravel, Sasseville et al. 1990), 

providing homotopic and hetero-homotopic projections linking the two hemispheres of 

the brain.  From a physiological perspective there is contention as to the pathway by 

which the corpus callosum mediates functional connectivity. One school of thought 

suggests an inhibitory role of the corpus callosum (Cook 1984; Banich and Belger 1990) 

while the more widely accepted theory advocates an excitatory role of the corpus 

callosum (Dorion, Chantome et al. 2000; Rattenborg, Amlaner et al. 2000); however both 

theories allow for selective lateralization (or unilateral hemispheric domination) of 

cortical activation as a function of the callosal pathways (van der Knaap and van der Ham 

2011).  

Bilateral functional connectivity has been assessed in the split brain human model 

using fMRI; in all cases epileptic patients were evaluated. Johnston et al. collected resting 

state fMRI before and after a complete sectioning of the corpus callosum, revealing a 

prominent reduction in interhemispheric functional connectivity while intrahemispheric 

connectivity remained relatively intact during the immediate post-operative period 

(Johnston, Vaishnavi et al. 2008). A similar study by Pizoli et al. evaluating connectivity 

before and after a two-thirds corpus callosotomy that interestingly resulted in improved 

BOLD and EEG bilateral functional connectivity (from highly uncoordinated and 
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sporadic to coordinated and near normal) evaluated one day post and four months post-

surgery respectively (Pizoli, Shah et al. 2011).  

Montplasier et al. evaluated EEG bilateral functional connectivity during stage II 

and REM sleep before and after partial callosotomies in two patients (Montplaisir, 

Nielsen et al. 1990). The work indicated significant reductions in bilateral coherence 

across frequency bands that accurately reflected the degree of anatomical sectioning. This 

anatomical-connectivity relationship was confirmed in another EEG study evaluating 

three epileptic patients pre- and post-surgery revealing profound decreases in bilateral 

connectivity following the sectioning (Brazdil, Brichta et al. 1997). Conversely Corsi-

Cabrera and colleagues presented EEG analysis of a single patient with a partial 

callosotomy before and after surgery and distinguished only minor, non-significant 

changes in bilateral connectivity (Corsi-Cabrera, Trias et al. 1995). Later work by the 

same group indicated a decrease in bilateral EEG coherence following callosal 

sectioning; however, connectivity was still present and fluctuated depending on the 

wakeful state (Corsi-Cabrera, Ondarza et al. 2006).  

The results of the human split-brain studies in epileptic patients are equally 

interesting and incongruent, highlighting the need for controlled studies in healthy 

subjects where experimental variabilities are reduced, while the number of subjects is 

increased. In the present study we expand on the current body of functional network and 

split brain work by evaluating bilateral functional connectivity in the somato-motor 

network of the split brain rat model using consecutive fMRI and electrophysiological 

recordings. The focus therefore shifts singularly to the role of the corpus callosum in 
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modulating functional networks as opposed to the copious variability associated with 

clinically and functionally complicated epileptic patients.  

While fcMRI shows promise as a clinically useful tool, researchers still do not 

fully understand the physiological or functional basis of coherent slow wave oscillations. 

This work provides two important insights. We explore the neural correlates of functional 

connectivity MRI by directly comparing bilateral fMRI connectivity to the analogous 

electrophysiological bilateral connectivity in the split brain rodent model. This 

experiment provides a unique platform to evaluate the coupling between 

electrophysiological and BOLD signals on the network level. Secondly we further probe 

the role of the corpus callosum, the primary interhemispheric neural pathway, in 

facilitating functional connectivity using multimodal functional recordings.  

 

Methods 

Animal Preparation and Physiological Monitoring During Callosotomy Surgery 

All experiments were performed following the guidelines set by the Institutional 

Animal Care and Use Committee (IACUC) at Emory University. Ten male Sprague-

Dawley rats (200-300 g) were initially anesthetized in an anesthetic chamber filled with a 

mixture of isoflurane and oxygen. Rats were divided into two groups; five rats were in 

the full callosotomy group and five rats were in the “sham” callosotomy group. Once the 

rat was anesthetized, he was moved to a stereotaxic head holder (Harvard Apparatus) and 

secured with a bite bar and ear bars. The rat was supplied with 2 – 2.5 % isoflurane 

(depending on anesthetic needs, physiology determined) mixed with oxygen, while 
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undergoing initial experimental setup and the succeeding surgery. Body temperature was 

monitored and maintained at ~ 36° C for the duration of the surgery to keep vasodilation 

to a minimum. The right femoral artery with catheterized to allow for monitoring of 

blood pressure. 

Fur was removed from the top of the rodent’s head using an electric shaver 

followed by the use of a liquid hair removal product to remove the remaining hair. 

Optical ointment was applied to each eye to prevent corneal drying throughout the 

duration of the experiment. All rats were checked for response to a toe pinch before 

beginning surgery. An incision was made along rostral-caudal midline (bregma +5mm 

through -10mm) through the skin and muscle to expose the skull. Skin and muscle was 

carefully retracted to reveal skull areas containing the bregma and bilateral primary 

somatosensory areas, 4mm lateral and 1mm rostral from bregma. A low temperature 

cauterizer was used to stop any bleeding from the skull. 

Cranial Window 

The next step was to create a cranial window for performing the callosotomy. 

Using a fine-tipped drill (Omni-Drill35; World Precision Instruments) a rectangular 

section of the skull was shaved until the dura was reached. Drilling was performed while 

viewing the skull through a 5x binocular microscope. The cranial window extended in the 

rostral-caudal direction from +2mm to -5mm from the bregma, and laterally the window 

extended from 0 mm toward the right side of the skull to +2 mm from bregma (Figure 

14). Once the dura was visible it was carefully pierced and sliced along the entire rostral-

caudal cranial window using a 27 gauge needle; care was taken to avoid slicing vessels. 
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Figure 14: Rat skull structure indicating the cranial window and trephine holes. 

 

Callosotomy 

A knife was fashioned using 316 stainless steel wire with an outer diameter of 

0.33 mm. 40mm of wire was used for creation of the knife with 3mm at one end bent 

using forceps to a 90° angle. A 5x binocular microscope was used to view the 3mm edge 

of the knife. Using a fine grained triangular hand file steel was removed at a 45° angle on 

opposite sides of the knife to form a sharpened ‘V’ on the leading edge of the knife. 

Similarly material was filed away from the back edge of the knife to form a second V, 

leaving a diamond shaped section of wire 5mm in length perpendicular to a 35mm 

section of undisturbed wire.  

Once the wire was sharpened, the 35mm edge of the knife was lightly covered in 

Superglue® and inserted into a section of a 23 gauge needle, with the sharp needle 

portion removed. 6mm of the wire, adjacent to the 90° bend, was left protruding from the 
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needle while the other 29mm was encapsulated by the needle. The purpose of this was to 

reinforce the long section of the knife which would be attached to a micromanipulator 

resulting in a minimization of deflection during the cutting process described below. 

The wire knife was attached to the long arm of a micromanipulator integrated 

with the head holder system (Harvard Aparatus). The knife was positioned such that the 

end of the short side of the knife was facing in the rostral-caudal plane with the free tip 

pointing caudally. The manipulator was tilted to an angle of 10° such that the tip of the 

free end of the knife was pointing slightly upward. The 10° angle was implemented such 

that the cutting edge of the knife was parallel to the direction of the corpus callosum. The 

knife was positioned rostral-caudally to +2mm from bregma and 1mm laterally to the 

right of bregma (for one full callosotomy rat, the corpus callosum was sliced on the left 

side) and lowered to the brain surface. The micromanipulator was moved in one of two 

manners to create either a full callosotomy or a sham callosotomy, making up the two 

experimental groups.    

Full Callosotomy 

The manipulator arm was moved in the following manner from the surface of the 

brain beginning @ +2mm rostral and +1mm laterally right of the bregma with a 10° 

rostral tilt: 1.) 4.82mm into the brain (ventral) 2.) 1mm out (dorsal) 3.) 1mm caudal 4.) 

0.5mm dorsal 5.) 1mm caudal 6.) 0.5mm dorsal 7.) 1mm caudal 8.) 0.5mm dorsal 9.) 

1mm caudal 10.) 0.5mm dorsal 11.) 2.41mm caudal 12.) 0.35mm ventral 13.) removed 

dorsally. The surgical process is depicted in 7 steps in Figure 15.  
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Figure 15: Fresh sagittal tissue slice clearly displaying the corpus callosum (top). The bottom 

window indicates the seven surgical steps that result in severing of the corpus callosum.  

 

 

Sham Callosotomy 

Beginning at +2mm rostral and +1mm laterally right of the bregma, in order to 

create a sham callosotomy, the micromanipulator was adjusted nearly identically to the 



www.manaraa.com

98 
 

full callosotomy model. The only difference was at step 1 (described in the previous 

paragraph), the manipulator was adjusted ventrally 3.1mm as opposed to 4.82mm to 

avoid reaching to the depth of the corpus callosum. 0.5 mm of “buffer space” was built in 

to the sham paradigm to account for slight variability in brain size to ensure the corpus 

callosum was not affected. All other manipulations are identical to the full callosotomy 

paradigm and occur in the same order.  

Following the callosotomy or sham callosotomy, light pressure was applied using 

gauze until bleeding ceased. A map of the rat’s vascular structure is presented in Figure 

16. Vascular disruption was centralized to the right superior cerebral vein. Mineral oil 

was used to fill the cranial window, providing a barrier against excessive drying of 

surface brain tissue. The rat was then removed from the head holder and placed into an 

anesthetic chamber lightly filled with isoflurane to allow transfer to the imaging suite.  

 

 

Figure 16: Rat vascular structure. Modified from Lin et al. (Lin, Lin et al. 2009). 
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fMRI setup 

The rat was transferred from the anesthetic chamber to a plastic MRI cradle 

(Bruker, Billerica, MA), where his head was fixed in place using a bite bar and ear bars. 

Isoflurane was continued at 2% throughout the duration of the fMRI setup with slight 

modulations based on physiological state. Heart rate and oxygen saturation were 

monitored and recording using a pulse oximeter placed on the left rear forepaw. Body 

temperature was monitored and recording using a rectal thermometer; temperature was 

maintained at ~37° C using an adjustable temperature warm water circulation system. 

Respiratory rate was monitored using a pressure-sensitive balloon placed directly under 

the rat’s chest. Colgate toothpaste was applied onto the skull surface to mimic the 

properties of the previously removed muscle. Major distortions are present in the EPI 

images from susceptibility artifacts induced due to the brain/air interface; the toothpaste 

alleviates these artifacts (Lewin J.S 1995). Following application of the toothpaste, eye 

ointment was reapplied and a 2cm Bruker surface receive coil was taped to the coil 

directly above the rat’s head. 

Once setup was complete a subcutaneous bolus of 0.025 mg/kg of 

dexmedetomidine (Dexdomitor, Pfizer, Karlsruhe, Germany) was delivered to the rat’s 

upper right leg; isoflurane was discontinued 5 minutes after the dexmedetomidine bolus. 

Total time under isoflurane was approximately 4 hours at the time of the switch to 

dexmedetomidine (total time under anesthesia was matched between the full and sham 

groups). Dexmedetomidine is used as an alternative to isoflurane for functional imaging 

because it causes less burst suppression and a sedated effect (Nelson, Lu et al. 2003) as 

opposed to a highly anesthetized state (Nakao, Itoh et al. 2001). Fifteen minutes post-
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bolus a subcutaneous infusion of 0.05 mg/kg/hr dexmedetomidine was initiated; the drug 

was delivered through a 27 gauge butterfly needle inserted subcutaneous and attached to 

the rat’s upper right leg. ~90 minutes following the initial bolus, dexmedetomidine was 

increased to 3x the original infusion dose for maintenance of anesthetic depth (Weber, 

Ramos-Cabrer et al. 2006; Pawela, Biswal et al. 2009). 

Image Acquisition 

All MRI images were acquired using a 20cm horizontal bore 9.4 T Bruker 

BioSpec magnet equipped with an actively shielded gradient coil with 20 G/cm gradient 

strength and rise time of 120 µs. The Bruker BioSpec was controlled using an AVANCE 

console (Bruker, Billerica, MA). An actively decoupled cross-coil imaging setup was 

used which included a 7cm volume coil for RF transmission and a Bruker built 2cm 

surface coil for signal reception (Bruker, Billerica, MA). 

Initially automatic adjustment of shimming, basic frequency, transmit power, and 

receiver gain was performed; following these adjustments a FLASH image was acquired 

in three planes. Based on the FLASH image a single 2 mm slice was positioned over the 

primary somatosensory cortex (SI) based on known anatomical markers. A high 

resolution rapid acquisition with relaxation enhancement (RARE) image (TR = 5s, TE = 

17.5, Averages = 4, Resolution = 100 µm in-plane) was acquired in over 20 0.5mm slices 

positioned perpendicularly to the length of the callosotomy to obtain an image displaying 

the efficacy of the surgery and possible influences to surrounding anatomy. 

Following the RARE acquisition, shimming was performed on the single slice of 

interest to obtain maximum SNR and spatial homogeneity. Approximately one hour 
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(Full- 1.1 ± 0.06 hours Sham- 1.2 ± 0.12 hours) following the dexmedetomidine bolus 

and cessation of isoflurane use, the first resting state functional image was acquired with 

the following parameters: single-shot gradient echo EPI, Repetitions = 1000, TR = 

500ms, TE = 15ms, total scan time = 8 minutes 20 seconds, number of slices = 1, slice 

thickness = 2mm, FOV = 2.56cm × 2.56cm, matrix size = 64 × 64. A resting state scan 

with the listed parameters was collected every 15 minutes for 2 hours; eight total resting 

state images are obtained. Following the final resting state scan, isoflurane was turned 

back on at ~2% mixed 1:1 with oxygen and room air. The rat was removed from the 

scanner and the MRI cradle, dexmedetomidine was discontinued and isoflurane 

anesthesia was once again induced. The rat was returned to the mobile anesthetic 

chamber and transported to the procedure room for further surgery and 

electrophysiological recording. 

 Trephine Holes and Electrophysiology 

The rat was once again placed in the stereotaxic head holder. Toothpaste was 

removed from the skull and the area was thoroughly cleaned cleaned. Two holes are 

opened, one on the left side and one on the right side of the skull 4mm lateral and 1mm 

rostral to the bregma using a fine tipped drill (Omni-Drill35; World Precision 

Instruments) while viewing through a 5x binocular microscope. Skull bone was shaved 

down slowly and carefully until the dura was revealed. Each hole measured ~1.5 mm in 

diameter. Surface brain vessels are visually identified, and the tip of a 27 gauge needle is 

used to pierce the dura away from the vessels to allow for insertion of the 

microelectrodes. Microelectrodes were fabricated from borosilicate using a micropipette 
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puller (PE-2, NARISHIGE), to form a tip ~10 µM in diameter, allowing for local field 

potential recordings.   

The electrodes were filled with a sodium chloride solution resulting in an 

impedance of 1-5 MΩ measured at 1 KHz. Two separate stereotaxic arms were used to 

hold the electrode over the holes; the electrodes were angled 30 degrees laterally and 

lowered to a depth of ~1mm directly into the primary somatosensory cortex. The 

recorded electrode signal was checked for noise and signal inflection direction. The 

signal ground was inserted under the skin of the caudal portion of the surgically opened 

area (several ground locations were tested, and this area provided the most consistent 

reduction in background noise). 

Following electrode insertion, a bolus of 0.025 mg/kg of dexmedetomidine was 

once again delivered to the rat’s upper right leg. Five minutes post bolus, isoflurane was 

discontinued. Fifteen minutes after the bolus, an infusion of 0.05 mg/kg/hr 

dexmedetomidine was started and delivered through a subcutaneously inserted butterfly 

needled attached to the upper right leg.  

Approximately 45 minutes following the switch to dexmedetomidine (Full - 0.7 ± 

0.2 hours; Sham- 0.7 ± 0.2 hours), eight resting state recordings of right and left primary 

somatosensory activity were obtained. Sampling was acquired at a rate of 12 KHz and 

five minutes of data was obtained for each scan. Scans occurred in 10 minute intervals 

until eight scans were collected. 
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Following the final resting state electrophysiology scan, electrodes were removed from 

the brain, dexmedetomidine was discontinued and the rat was returned to the isoflurane 

filled anesthesia chamber. 

Histology 

Perfusion was performed on the first three rats from each experimental group 

using 4% formaldehyde and phosphate buffered saline. Brains were removed and then 

allowed to saturate for 24 hours in a mixture of formalin and 15% sucrose; brains were 

then moved to a solution of 30% sucrose and formalin for an additional 24 hours. 

Following this saturation period, brains were frozen and sliced in 250 µM coronal slices 

using a microtome perpendicularly to the length of the corpus callosum. 4x microscope 

images were acquired and histological evaluation was performed to confirm experimental 

success (severing or non-severing of the corpus callosum). Histological classification was 

then matched with the corresponding RARE MRI images. Five MRI researchers familiar 

with rat brain anatomy performed blinded classification of experimental methods (sham 

or full callosotomy) using only the RARE MRI data to determine if accurate evaluation 

of experimental success was possible without the need for histology. 

Data Analysis 

Comparisons were made between the sham callosotomy and full callosotomy 

experimental groups by evaluating band limited and broadband electrophysiological 

bilateral connectivity, fMRI seed based bilateral connectivity, and whole brain 

spatiotemporal dynamic activity in the fMRI data. All data was processed and evaluated 

using code written in MATLAB (MathWorks, Natcik, MA). 
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fMRI  

Each resting state scan was 8 minutes and 20 seconds and was prepared with 20 

dummy scans, allowing for transient signal intensity fluctuations to dissipate before 

acquiring data. Preprocessing was the first step in preparing data for analysis. Whole 

brain signal was regressed from all data sets followed by quadratic detrending. A 

bandpass filter was then applied using a finite impulse response filter between 

frequencies of 0.01 – 0.3 Hz with a 100 second filter window length (1/ minimum 

evaluated frequency).  Following filtering data were normalized to unit variance by 

subtracting the mean and dividing by one standard deviation for all image voxels, 

allowing for comparison to be made between rats. Data sets were masked to excluded 

information from tissue outside of the brain. 

Seed regions of interest (ROI) were selected manually in the primary 

somatosensory cortex (SI), secondary somatosensory cortex (SII), and the 

caudate/putamen (CP) complex in the opposite hemisphere from the callosotomy 

procedure. Normalized cross correlation was calculated between functional timecourses 

generated from the seed region and all other voxels in the brain.  Connectivity values (r) 

from the 15 most correlated voxels from contralaterally analogous region were 

transformed to Z-scores and averaged, representing bilateral functional connectivity 

strength. Average values for SI, SII, and CP bilateral connectivity were calculated for 

both experimental groups. Two-tailed, unpaired t-tests were performed between the sham 

and full callosotomy groups for each seed time course. Change in shared variance was 

calculated between the two groups [(r
2

sham – r
2

full) / r
2

sham] (Johnston, Vaishnavi et al. 

2008). 
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A pattern finding algorithm first implemented by Majeed et al. was used to 

evaluate the presence of reproducible patterns of low frequency spatiotemporal dynamic 

activity manifesting as waves of high and low coordinated activity propagating through 

the cortex (Majeed, Magnuson et al. 2009; Majeed, Magnuson et al. 2011). The algorithm 

functions by selecting a chunk of consecutive images of specified length (5 seconds; 10 

repetitions) chosen at a random start point in the data set. Sliding correlation was 

performed between the image chunk and the entire preprocessed image series. Time 

points of high correlation between the original chunk and the image series are averaged 

together to create a new template that represents a repeating spatial and temporal pattern 

of functional activity. Sliding correlation was then performed with the new template and 

the original data set, and time segments of high correlation are once again averaged. This 

process repeats until convergence of the template occurs. The resulting template reveals 

the presence or non-presence of spatiotemporal activity patterns. Templates are 

visualized on a blue to red color scale (blue – low, red-high, Matlab colorbar “jet”) 

representing the strength of the finalized template. Final spatiotemporal dynamics 

templates are categorized into one of three groups: no dynamics, bilaterally symmetric 

dynamics, or unilateral dynamics. Detailed explanation of this algorithm and the 

underlying theory can be found in the Majeed et al. papers (Majeed, Magnuson et al. 

2009; Majeed, Magnuson et al. 2011).  

Electrophysiology 

Band-limited power (BLP) timecourses were created for six well characterized 

electrophysiological frequency bands: delta (1-4 Hz), theta (4-8 Hz), alpha (8-14 Hz), 

low-beta (14-25 Hz), high-beta (25-40 Hz), and gamma (40-100 Hz). To calculate BLP 
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power, a specified window length (delta and theta – 2 seconds; beta and gamma – 0.5 

seconds) was used to generate a representative spectrogram by performing an FFT of the 

raw timecourse. Mean power within the band of interest was calculated. The window was 

then shifted in 0.5 second intervals and mean BLP was calculated for each window shift 

until the entire electrophysiological run had been evaluated. Windows for delta and theta 

band were overlapped by 75%; no overlap occurred for the theta, beta, or gamma band 

calculations. Raw time courses were also directly filtered between the broadband ranges 

of 0 - 100Hz. 

Following BLP calculations and broadband power filtering, Pearson correlation 

was calculated between data from the left and right electrodes (positioned in bilateral SI) 

using all six BLP timecourses and the broadband filtered data sets from each rat. 

Resulting correlation values were z-transformed and finally two-tailed, unpaired, student 

t-tests were performed between z-scores in each band between the sham and full 

callosotomy groups.  Change in shared variance was calculated between the two 

experimental groups for each band. 

Multiple Comparisons 

Bonferroni correction was used to correct for possible Type I errors (false 

positives considered significant). Two families were evaluated: BOLD comparisons and 

electrophysiological comparisons. There were three P-values in the BOLD family and 

eight 7-values in the BOLD family. All values described as significant in the work have 

based Bonferroni multiple comparison correction.  
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Results 

In this work we evaluate BOLD and electrophysiological bilateral functional 

connectivity in rats with either a complete sectioning of the corpus callosum or a sham 

surgery in which the corpus callosum was left intact. Group averages of temperature, 

heart rate, breathing rate, and oxygenation can be found in Table 6. 

 

Table 6: Physiological measurements. Temperature, breath rate, heart rate, and Sp02% were 

calculated for both the sham and full callosotomy groups. Mean and SEM values are presented 

for each group. 

 
Temperature (°C) Breath Rate (bpm) Heart Rate (bpm) Oxygenation (Sp02%) 

     

Sham 37.01 ± 0.22 72 ± 8.79 315.63 ± 12.18 98.44 ± 0.89 

Full 37.37 ± 0.17 73.98 ± 4.81 335.50 ± 7.29 99.33 ± 0.16 

 

 

Experimental Classification 

Histological evaluation of the effectiveness of the surgical procedure was carried 

out for the first three rats from each group. Surgeries were successful for all six rats 

resulting in minor variations in cut depth (± 0.2 mm) with relation to the corpus callosum 

over the rostral caudal plane; however, for all six rodents the corpus callosum was either 

fully severed or remained intact. Five MRI researchers familiar with MRI data examined 

high resolution RARE images (blinded to the histological findings) and were able to 

classify the images into the correct experimental group (matching histology) with 98.7% 

accuracy (148/150 correct). An example of the matched RARE images and the 
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corresponding histology are shown in the top row of Figure 17. Accurate surgical 

procedures were confirmed based on RARE images in the final 4 rats where histology 

was not performed.  Slices from the five sham rats (Figure 17 - left) and six full 

callosotomy rats (Figure 17 - right) reveal the success of both experimental procedures.  

 

Figure 17: RARE images and histology. Single slice RARE MRI (matching functional recording 

slice) data is shown for all five rats in the sham callosotomy group and all six rats in the full 

callosotomy group. A single matched RARE-histological confirmation is also shown for both 

experimental groups. These images confirm a clear distinction and success of two experimental 

groups; one where a full callosotomy is performed and another where equal gray matter is 

severed, but the corpus callosum remains intact. 
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Data Exclusion 

All eleven rats were used for evaluation of the fMRI data; however, data from 

entire rats were excluded from the electrophysiological analysis. An incorrect amplifier 

setting resulted in complete saturation of a single electrode in one rat, and no data was 

recorded for that electrode; electrophysiological data from this rat was not used. 

Additionally, a rat was excluded from both the sham and full callosotomy results based 

on persistent data anomalies. All bilateral correlation values for all bands are plotted for 

both experimental groups in Figure 18. Included data is shown in solid gray while the 

excluded data is shown in a striped red color. More than 10% of data points recorded for 

both excluded rats resulted in a value greater than 2 standard deviations from the band-

limited mean. Interestingly, the raw data time courses from the two excluded rats 

exhibited opposing baseline polarities, while all included rats timecourses shared a 

directional baseline polarity. Visual examination of all raw data sets resulted in the 

removal of two additional scans from one rat as major artifacts were present in data from 

both electrodes resembling a jostling of the electrode wires.  

fMRI 

ROI positioning and the resulting correlation maps are shown in Figure 19 for the 

sham and full callosotomy groups. The connectivity maps in Figure 19 are from 

individual rats, but illustrate approximately the group averages for each ROI. Figure 20 

indicates average connectivity values for the sham and full callosotomy groups at each 

evaluated ROI; error bars represent squared error of the mean (SEM). Connectivity 

between bilateral low pass filtered (0.01 – 0.3 Hz) BOLD data revealed higher mean 

connectivity values in the sham group for primary and secondary somatosensory cortices 
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as well as the caudate putamen complex as compared to the full callosotomy group. 

Statistically significant differences in functional connectivity were found between the 

sham and full callosotomy group for all three seed regions evaluated. Shared variance 

was reduced after a full callosotomy as compared to the sham callosotomy by 51.7%, 

41.7%, and 43.9% in SI, SII, and CP respectively. A summary of group means, SEMs, p-

values of statistical comparisons, and decreases in shared variance can be found in Table 

7.  
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Figure 18: Z-scores representing bilateral electrophysiological correlation from all rats and all 

frequency bands (sham-top, full-bottom).  Solid gray bars indicate data from the four rats from 

each group from which electrophysiological data was included; the striped red bars represent the 

single rat in each group where electrophysiological data was exclude. In the excluded data > 10% 

of calculated bilateral connectivity values fell > 2 standard deviations from the band specific 

mean. 
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Table 7: Bilateral connectivity and statistics. Mean and SEM are presented for BOLD and 

electrophysiological bilateral functional connectivity data. P-values and decrease in shared 

variance are calculated between the sham and full callosotomy groups for each seed region 

(BOLD) and across all BLP frequency bands (electrophysiology). Decrease in shared variance 

between sham and full callosotomy groups is similar for BOLD SI data and the corresponding 

broadband BOLD SI connectivity data.  

 
Sham 

Callosotomy (r) 
Full 

Callosotomy (r) 

Decrease in 
Shared 

Variance P-Value 

BOLD 
   

 

     

SI 0.1605 ± .021 0.1116 ± .009 51.7% 0.0133 

SII 0.1471 ± .014 0.1123 ± .008 41.7% 0.0203 

CP 0.193 ± .022 0.1445 ± .012 43.9% 0.0278 

    

 

Electrophysiology 
   

 

    

 

Delta 0.5613 ± .015 0.2802 ± .028 75.1% 1.61x10-17 

Theta 0.1180 ± .011 0.0585 ± .008 75.4% 2.39x10-5 

Alpha 0.1021 ± .014 0.0730 ± .010 48.9% 0.0460 

Beta-L 0.1534 ± .012 0.0730 ± .011 77.4% 2.54x10-5 

Beta-H 0.2420 ± .014 0.1243 ± .022 73.6% 4.61x10-6 

Gamma 0.4542 ± .012 0.2068 ± .041 79.3% 1.07x10-11 

    
 

Broadband 0.4847 ± .016 0.3370 ± .018 51.7% 1.02x10-6 
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Figure 19: BOLD functional connectivity. Pearson correlation functional connectivity maps are 

overlaid on corresponding EPI images for one rat from each experimental group. Correlation 

maps from each rat closely match mean group values and were chosen for that purpose. Manually 

selected representative ROIs are shown for both rats. Significantly higher spatially specific 

bilateral functional connectivity is observed in the sham callosotomy rodent and compared to the 

full callosotomy rodent.  

 

 

 

Figure 20: fMRI low frequency (0.01 – 0.3 Hz) bilateral functional connectivity in three seed 

regions. Significant differences in bilateral functional connectivity are calculated between the 

sham and full callostomy groups for the primary and secondary somatosensory cortices as well as 

for the caudate/putamen complex. Correlation strength is universally stronger in the sham 

callosotomy group. 
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Spatiotemporal dynamic templates were generated for all rats. Resulting 

spatiotemporal dynamic templates were categorized by visual inspection into three 

groups presented in Figure 21: bilateral, unilateral, or no spatiotemporal dynamics. A 

dynamic pattern was only confirmed when the movement of a high or low correlated 

cluster could visually be observed “travelling” in an organized manner across the cortex 

from one frame to the next. Waves of activity typically traveled from lateral cortical 

regions (SII), through central cortical regions (SI) and finally into the motor cortex and 

midline before beginning again in the lateral cortex. A summary of the spatiotemporal 

dynamic categorization for rats in both experimental groups can be found in Table 8. The 

full callosotomy rodents never exhibited the presence of bilateral spatiotemporal 

dynamics; however, there were high occurrences of unilaterally propagating waves 

(48.9% of scans) which have rarely been observed in previous experiments using healthy, 

non-surgically altered rats. Bilateral waves of activity were present 20% of the time in the 

sham callosotomy group; however, most commonly, no spatiotemporal dynamics were 

present. 

 

Table 8: Spatiotemporal dynamic categorization. Spatiotemporal dynamic templates were 

generated for both experimental group; the resulting templates were categorized as exhibiting 

bilateral, unilateral, or no dynamic behavior (see Figure 21). There were no bilateral dynamics 

present in any of the full callosotomy data; however, a novel unilateral spatiotemporal dynamic 

pattern was observed for the majority of spatiotemporal dynamic templates in the full 

callosotomy data. 

Dynamic State: Bilateral Unilateral None 

    

Sham 22.2% 2.8% 72.2% 

Full 0.0% 48.9% 51.1% 
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Figure 21: Spatiotemporal dynamic templates generated according to Majeed et al. paradigm 

(Majeed, Magnuson et al. 2011). Spatiotemporal dynamics were clearly categorized into three 

groups, bilateral dynamics (top), unilateral dynamics (middle), or no dynamics (bottom). 

Unilateral dynamics are unique to these callosotomy data and have not been seen previously in 

non-callostomized rodents.  Percentage of rats from each experimental group that were classified 

into each of these dynamics categorizations can be found in Table 8.  
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Electrophysiology 

Bilateral connectivity of band limited electrophysiological power was assessed in 

delta, theta, alpha, low beta, high beta, and gamma band frequency ranges. Direct 

bilateral correlation of filtered broadband activity was also assessed. Figure 22 illustrates 

the results of analysis. The sham callosotomy data exhibited universally higher functional 

connectivity for all evaluated bands. Statistically significant differences between the two 

were calculated for delta, theta, low beta, high beta, gamma, and broadband ranges. A 

summary of all electrophysiological connectivity results can be found in Table 2. There 

was a reduction of shared variance of 51.7% in the broadband correlation data in the full 

callosotomy group as compared to the sham callosotomy group. This reduction in shared 

variance was equal to the analogous calculation performed between bilateral primary 

somatosensory BOLD data.  
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Figure 22: Electrophysiological band limited power functional connectivity between bilateral 

primary somatosensory regions. Mean Pearson connectivity is universally higher for the sham 

callosotomy rodents as compared to the full callosotomy, and significant differences between the 

groups are found in delta, theta, low beta, high beta, gamma, and broadband data. The most 

strongly significant differences were found in the delta and gamma band data.  

 

Discussion 

Surgeries were performed in two groups of rodents resulting in either a complete 

sectioning of the corpus callosum or a sham sectioning (gray matter was severed, but not 

the corpus callosum). Electrophysiological and BOLD fMRI were used to assess bilateral 

connectivity following these surgeries. A universal reduction in bilateral functional 

connectivity was apparent in BOLD and electrophysiological data in the full callosotomy 

groups. The significance of these findings are twofold: for the first time the effects of the 

split brain model on functional network integrity has been evaluated in a previously 

healthy rodent population, secondly the split brain model provides an ideal platform for 
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evaluating the interconnectedness of BOLD and neural activity by determining the 

similarity of effects on each modality as a results of the interventional surgery. 

Anesthesia is another area of potential confound; both the isoflurane used for long 

period of time prior to functional imaging and the concurrent use of dexmedetomidine 

while imaging surely influence ongoing functional activity. In Chapter 2 of this thesis, we 

reveal longitudinal, lingering influences of long durations of isoflurane prior to functional 

imaging that may take up to several hours to dissipate depending on the preceding length 

of isoflurane use. Waiting for absolute dissipation of the functional effects of isoflurane 

was not feasible due to the length of the procedures in their current form. In lieu of 

waiting, we were careful to maintain equidistant spacing between the cessation of 

isoflurane and functional recordings in both groups (see fMRI and electrophysiology 

subsections of methods), thereby limiting possible biasing effects of anesthetic 

influences. The resulting fMRI connectivity in the current study, even within the sham 

group, was lower than normally seen (~0.3 – 0.55 depending upon the imaging and 

processing techniques) in healthy non-callotomized rats (He, Snyder et al. 2008; Zhao, 

Zhao et al. 2008; Magnuson, Majeed et al. 2010; Williams, Magnuson et al. 2010; 

Kalthoff, Po et al. 2013) and was likely due to compounding influences of vascular 

perturbations and lingering isoflurane effects. Furthermore it is clear from Figure 19 that 

highly specific BOLD bilateral correlation is found in sham callosotomy data while the 

full callosotomy data connectivity seemingly reflects less spatially specific residual 

correlation. Also of interest is the strong electrical connectivity (once again dependent 

upon hardware parameters and processing techniques) found in the sham callosotomy 

data. This is likely due to recording occurring long after the initial surgical isoflurane 
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period (multiple hours) and the neural activity being significantly less affected by 

possible vascular damage. 

Minor surgical variability was apparent in our RARE MRI images as well as 

histology in the depth of the sham callosotomies (apparent in Figure 17). 0.5 mm of 

buffer space was built into the sham callosotomy group to insure the corpus callosum was 

not affected by the surgical procedure. While zero variation in surgical depth of the sham 

cut would have been ideal, the resulting surgical outcomes were clearly categorized into 

two groups: severed corpus callosum and intact corpus callosum and served our purposes 

in this work.  

All rodents were included in BOLD analysis as fMRI setup is relatively easy and 

consistent; however, in the electrophysiological data, one rodent contained hardware 

setup errors and was discarded, and two additional rodents (one from each group) were 

discarded due to drastic data anomalies. >10% of bilateral connectivity values throughout 

the electrophysiological bands felt outside of 2 standard deviations for the anomalous 

rats.  For all other rats combined there were only 2 anomalous data values out of 702 total 

data points. It is clear from the data in Figure 18 that data from the anomalous rats fell 

into separated groupings as compared to data from the other four rats in each group. Raw 

data from both excluded rats exhibited a peculiar DC bias between the two electrodes, 

possibly the result of collecting data from too shallow of cortical depth, manifesting as 

inverse contributions from spiking activity. Specifically in the sham callosotomy group 

the excluded values appear to be approximately an inverse of the mean values for each 

group.  
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Gamma and delta band BLP connectivity are thought to be most closely reflective 

of ultra-low frequency fMRI networks (Leopold, Murayama et al. 2003; Lu, Zuo et al. 

2007; Scholvinck, Maier et al. 2010). In the work presented here bilateral delta BLP 

connectivity showed the greatest statistical difference between the sham and full 

callosotomy experimental groups, while the next most significant difference between the 

groups occurred in gamma BLP connectivity.  

Doron et al., in studying an interhemispheric coordination model using lexical 

visual stimuli, encounter the transient manner in which functional networks activate and 

deactivate highlighting the need for non-static evaluations of functional networks to 

obtain novel insights into sensitive spatiotemporal information that was not previously 

obtainable (Doron, Bassett et al. 2012). We address this dynamic evaluative need in our 

work by performing spatiotemporal dynamic template analysis that was first offered by 

Majeed et al. (Majeed, Magnuson et al. 2009).  While our static evaluation revealed little 

to no connectivity in the full callosotomy model, the robust presence of unilateral 

spatiotemporal dynamics activity were indicated (Figure 6b). This unilateral pattern is a 

spatiotemporal template variation that is rarely observed in previous experimental groups 

suggesting its relationship to the surgical paradigm. While this pattern was also observed 

on a single occasion in the sham callosotomy group, the unilateral pattern appears to 

primarily be a correlate of the full callosotomy group. The unilateral nature of these 

dynamics suggests further that information necessary for bilateral coordination is not 

being exchanged between the hemispheres. The continuation of unilateral spatiotemporal 

patterns (that closely match the one sided counterpart from the bilateral spatiotemporal 

dynamics) suggests the possibility that these dynamics are driven by subcortical inputs, 
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but the bilateral coordination of these dynamics are mediated by the now severed corpus 

callosum. This subcortical influence theory is supported by Uddin et al.’s work who 

found strong residual bilateral connectivity in a patient with entirely removed 

commissural pathways (albeit 45 years following the callosotomy allowing ample time 

for functional rearrangement); they conclude the cortical networks are coordinated, at 

least in part, by subcortical mechanisms (Uddin, Mooshagian et al. 2008). 

To summarize, we present a robust finding indicating the corpus callosum’s role 

in facilitating bilateral functional connectivity in the rodent model. BOLD and 

electrophysiological data indicate significantly less bilateral functional connectivity in the 

experimental group where the corpus callosum was fully severed as compared to the 

sham callosotomy group. Furthermore bilateral primary somatosensory connectivity was 

affected to a similar degree in both BOLD and electrophysiological data suggesting 

significant interconnectedness between the measured signals. 
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CHAPTER 5 

QUANTIFYING SPATIOTEMPORAL DYNAMIC WAVES USING A 

BOOTSTRAPPING AND STATISTICAL PARADIGM 

 

Spatiotemporal Dynamic Analysis in its Current Form 

The Need for Dynamic Analysis 

Until recently, evaluation of large scale functional networks has been performed 

in a spatially and temporally static manner. Seed based functional connectivity is 

performed by acquiring one timecourse from a single location, followed by a Pearson 

correlation between that time course and other timecourses of interest. This result in 

dynamic information from all time periods of the resting state period (minutes long) 

being compressed to a single correlation value; time sensitive events (seconds long) and 

relationships are lost. In essence, from seed based correlation, we only obtain a picture of 

the brain’s relationship to one specific location, and copious information regarding the 

dynamic processes that make up that seed based connectivity or lack of connectivity are 

lost. In 2009, Majeed et al. (Majeed, Magnuson et al. 2009) presented a spatiotemporal 

dynamic paradigm (that we have used previously in analysis for this thesis) that 

alleviated many of the seed based limitations and provided a qualitative view of spatial 

and temporally relevant events that underlie coordination between specific brain regions. 

Since Majeed’s work, spatiotemporal dynamic analysis using alternate paradigms have 

been proposed (Chang and Glover 2010; Grigg and Grady 2010; Hutchison, Womelsdorf 

et al. 2012; Liu and Duyn 2013). 
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The Need for Quantification of the Current Spatiotemporal Dynamic Paradigm 

While the technique presented by Majeed et al. is robust and provides ideal 

visualization of space and time sensitive events, there is a major limitation which arises 

from the spatially continuous output generated from the algorithm. Majeed’s 

spatiotemporal dynamic algorithm includes all brain areas during analysis to probe for 

potential relationships, but for the majority of a resting state scan, most brain areas are 

not exhibiting a coordinated spatiotemporal relationship with other areas (or are 

represented by a secondary, unrelated spatiotemporal pattern). This results in a 

continuous output with highly variable “strength of correlation” values, which makes 

thresholding arbitrary and difficult, and leads to a final pattern that, while qualitatively 

dense with information, cannot be easily quantified. In this chapter we present a 

randomization technique to generate a threshold based on statistical significance. We 

apply this proposed spatiotemporal dynamic quantification paradigm to anesthesia time 

dependence data presented in Chapter 3.  

 

Methods 

Preprocessing and Spatiotemporal Template Generation 

The Whole brain signal was regressed from resting state BOLD data followed by 

linear detrending and filtering the data between 0.01 – 0.3 Hz using a FIR filter. Spatial 

blurring was performed using a 3x3 Gaussian kernel. Data sets were then masked to 

remove background noise, skull, and muscle to only include the brain area. 
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For each rat and scan spatiotemporal dynamic templates were generated using the 

Majeed et al. algorithm. A chunk of consecutive images is chosen from the resting state 

data set at a random starting position; sliding correlation is then performed between the 

image chunk and the preprocessed image series (evaluating spatial and temporal 

properties of correlation), correlation is calculated between the initial chunk and all other 

chunks of equal size using sliding correlation analysis. Correlation analysis reveals the 

image chunks which correlate most strongly with the initial chunk; these image segments 

are averaged together to create a new template. The averaged template is then used for a 

second round of sliding window correlation to find image chunks that share the strongest 

connectivity with the revised image chunk; this process continues until convergence is 

reached.  

Data Randomization and Statistics 

Preprocessed data from each rat is phase randomized by circularly shifting all 

voxel timecourses in the image a random distance. In this manner spatial relevance is 

retained; however, real phase locked signal relationships occurring throughout the brain 

will be lost. Spatiotemporal dynamic templates are then generated for the phase 

randomized data. One thousand iterations of this process are performed, until 1000 

random-phase spatiotemporal templates are available. A 2-tailed null distribution was 

generated at each voxel using calculated voxel values from the phase randomized 

template. P-values were calculated by comparing the actual voxel template value from 

the non-randomized data to the cumulative distribution function of the generated null 

distribution. Strict Bonferroni correction was implemented followed by rejection of 
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spatial clusters less than 25 voxels (based on smallest anatomical component in rodent 

cortex; secondary somatosensory cortex).   

Results 

Figure 25 (top) shows the formation of a spatiotemporal dynamic template using 

the Majeed et al. algorithm. Quantification is difficult due to the continuous nature of 

template values, and the arbitrariness of a cutoff considering the variability in template 

strengths between scans and rats. Figure 25 (bottom) illustrates the statistically limited 

amplitude values from the template, overlayed on the mean EPI image, which shows only 

the voxel values that are statistically different from the phase randomized null 

distribution. Three metrics of quantified dynamic outputs were calculated: total count of 

statistically significant voxels, mean amplitude values from statistically thresholded 

voxels, and the summation of mean amplitude values from statistically thresholded 

voxels. Static bilateral functional connectivity was compared to each of these metrics. 

This comparison between spatiotemporal dynamic quantification and traditional seed 

based functional connectivity reveals a statistically significant linear relationship for 

voxel count (p = 8.7x10
-7

), mean voxel amplitude (p = 0.005), and summation of voxel 

amplitudes (p = 6.0 x10
-6

). Figure 26 shows the count of statistically significant voxels 

vs. connectivity for 7 rats from the anesthesia time dependence work (Chapter 3). Finally, 

Figure 27 indicates the relationship between the average functional connectivity scores 

and average voxels passing the statistically significant quantification threshold in rats 

undergoing a callosotomy or sham callosotomy.  

A seed was placed in the bilateral somatosensory cortex, and the timecourses 

generated from spatiotemporal dynamics passing through that static point were plotted 
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(Figure 28). Correlation based on the spatiotemporal dynamics with no other relevant 

functional information reveals strong bilateral similarity. 

 

Figure 25: Spatiotemporal dynamic templates generated from the original Majeed et al. paradigm 

(top). Statistically thresholded dynamics allowing for quantification (bottom) of spatiotemporal 

dynamics. 

 

Discussion 

Spatiotemporal dynamic analysis is a novel approach for exploring functional 

activity, providing a more complete and information dense representation of the complex 

processes occurring over the duration of a functional scan. Quantification is necessary to 

allow for inter-subject comparisons. The tight coupling between the quantified dynamics 

and the static measure of functional connectivity suggests they are directly influencing 

one another or are a product of the same source.  
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If the only functional information present in an fMRI data set were these observed 

spatiotemporal dynamic patters, strong bilateral functional connectivity would result 

using seed based correlation. While we cannot make any claims regarding the causality of 

the relationship between static connectivity and dynamic patterns, there is clearly a 

relationship between the two.  Logically it seems much more likely that dynamics are 

driving static connectivity as opposed to a more convoluted relationship of static 

connectivity driving the dynamic processes.  

Spatiotemporal quantification clearly indicates significant voxels in the caudate 

putamen complex, indicating that the dynamic processes found traversing the cortex also 

extend into the subcortical structures. When the cortex is experiencing high amplitude 

pattern correlations, the caudate/putamen complex is typically experiencing low 

amplitude correlations. One explanation for this oscillation in high and low spatial 

activation involves whole brain energy consumption. Theoretically only a certain portion 

of the brain can be highly active at any one time based on limited energy availability; to 

counteract this increased energy consumption necessary for the high level of bilaterally 

symmetric activation, another portion of the brain must consequently be functionally 

depressed. 

Quantifying spatiotemporal dynamic patterns converts the original qualitative 

pattern finding algorithm into a powerful tool for comparing dynamic information 

between subjects. This tool is a substantial step towards harnessing the copious 

information available from dynamic analysis of brain function. 
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Figure 26: Traditional functional connectivity plotted versus quantified spatiotemporal dynamics for seven rats collected from the anesthesia data 

presented in Chapter 4. Averaged values from all seven rats are shown at bottom right. 



www.manaraa.com

129 
 

 

Figure 27: Functional connectivity is plotted versus quantified spatiotemporal dynamics for the 

11 rats that underwent either a callosotomy or sham callosotomy. 

 

 

 

Figure 28: Timecourses are generated from a seed region placed in the primary somatosensory 

cortex based solely on dynamic information passing through these regions. Strong functional 

similarity is apparent in the bilaterally symmetric timecourses.   
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CONCLUSION 

 

Understanding the structural and functional architecture of large scale brain networks is a 

critical step to grasping the complexities of the working mind. From the seemingly 

simplistic finding by Biswal et al. of temporally synchronous activity between spatially 

distant brain regions, brain research has undergone a major paradigm shift. Nearly every 

complex process our brains perform requires the coordination and communication of 

brain regions. We have quantified and defined these networks throughout the brain, 

across modalities, and on many different temporal scales; yet we still have not grasped 

the driving forces underlying this robust phenomenon.  

The callosotomy model provides a unique platform to evaluate the 

neuroanatomical impact on functional network integrity. Our robust findings with a bi-

modal experimental paradigm indicate that the corpus callosum facilitates bilateral 

functional connectivity in the rodent model. The corpus callosum’s effect on connectivity 

remains controversial due to the inhomogeneous findings in humans; this thesis work 

serves to largely alleviate the currently confounding results. Furthermore, bilateral 

primary somatosensory connectivity was affected to a similar degree in both BOLD and 

electrophysiological data suggesting the likely interconnectedness between the measured 

signals, which is a relationship still under investigation. 

Connectivity between bilateral cortical structures was significantly reduced in the 

callosotomy model as compared to the sham callosotomy model. This finding was not 

unexpected as there are direct axonal projections connecting analogous contralateral 

cortical anatomy. Interestingly the caudate/putamen complex, a subcortical structure, also 
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indicated a significant reduction in connectivity in the callosotomy model as compared to 

the sham callosotomy model, despite a lack of direct cortical projections between the two 

hemispheres. In order for the corpus callosum to influence subcortical connectivity in 

such a manner, information must be transferred across several synaptic pathways to reach 

the contralateral hemisphere. Following a full callosotomy, spatiotemporal dynamic 

patterns often presented only unilaterally, suggesting that information necessary for 

bilateral coordination is not being exchanged between the hemispheres. The continued 

presence of dynamic waves of activity despite the severed corpus callosum suggests 

dynamics are likely driven by subcortical inputs; however, the bilateral coordination of 

these dynamics is mediated by the now severed corpus callosum.  

Apart from the central thrust of this work, we provide several additional valuable 

contributions to the brain research community. We clearly characterize potential 

functional consequences of time-dependent variability in a commonly used anesthetic 

regiment and propose an ideal time window in which functional recording should take 

place. We compared and contrasted, for the first time, functional network activity 

assessed using CBV to recordings in the same rat using traditional BOLD imaging. These 

findings have been published and represent a unique and beneficial contribution to the 

field. We have also created a novel tool to allow for the quantification of spatiotemporal 

dynamics.  Each provides a means for quantifying data that was previously non-

quantifiable. The strong linearity between the quantified dynamics and the historically 

accepted measure of static functional connectivity suggests the significance of dynamics 

in defining functional networks, which is a continuing area of research.  
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Future work exploring the origin and functions of brain networks is vast.  While 

the current work has indicated the corpus callosum’s role in mediating functional 

networks, the driving origin of the synchronous signal has not been uncovered.  Probing 

deep brain neurons in the thalamus, midbrain, or brainstem may reveal links between 

stimulation and synchronous network activity which would suggest a potential origin. 

Modulation of functional networks using methods such as trans-cranial direct current 

stimulation, mindfulness training paradigms, or pharmacological pathways could prove to 

be clinically useful tools for many disease states. We evaluated the largest cortical 

spatiotemporal network in the brain; however, spatiotemporal networks on smaller scales 

likely exist as well which should be explored. One possibility for this exploration would 

be developing mathematical algorithms that can harness and compare the time and 

frequency relationships that exist between all of the voxels in fMRI data; methods such as 

wavelet analysis may be ideal for this formidable task. 

 This thesis work represents a substantial contribution to fMRI and general brain 

research by providing significant evidence suggesting the corpus callosum’s role in 

mediating activity in functionally connected networks.    
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